75.1-a7
75.1-a
8 8 8
16 16 1 6
Q ( − 3 ) \Q(\sqrt{-3}) Q ( − 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
75.1
3 ⋅ 5 2 3 \cdot 5^{2} 3 ⋅ 5 2
3 2 ⋅ 5 2 3^{2} \cdot 5^{2} 3 2 ⋅ 5 2
0.45547 0.45547 0 . 4 5 5 4 7
( − 2 a + 1 ) , ( 5 ) (-2a+1), (5) ( − 2 a + 1 ) , ( 5 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 2 2
2B
1 1 1
2 2 2
1 1 1
2.235701712 2.235701712 2 . 2 3 5 7 0 1 7 1 2
0.322695746
56667352321 15 \frac{56667352321}{15} 1 5 5 6 6 6 7 3 5 2 3 2 1
[ 1 \bigl[1 [ 1 , 1 1 1 , 1 1 1 , − 80 -80 − 8 0 , 242 ] 242\bigr] 2 4 2 ]
y 2 + x y + y = x 3 + x 2 − 80 x + 242 {y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-80{x}+242 y 2 + x y + y = x 3 + x 2 − 8 0 x + 2 4 2
1875.1-b7
1875.1-b
8 8 8
16 16 1 6
Q ( − 3 ) \Q(\sqrt{-3}) Q ( − 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
1875.1
3 ⋅ 5 4 3 \cdot 5^{4} 3 ⋅ 5 4
3 2 ⋅ 5 14 3^{2} \cdot 5^{14} 3 2 ⋅ 5 1 4
1.01847 1.01847 1 . 0 1 8 4 7
( − 2 a + 1 ) , ( 5 ) (-2a+1), (5) ( − 2 a + 1 ) , ( 5 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
1 1 1
0.447140342 0.447140342 0 . 4 4 7 1 4 0 3 4 2
1.032626388
56667352321 15 \frac{56667352321}{15} 1 5 5 6 6 6 7 3 5 2 3 2 1
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , − 2001 -2001 − 2 0 0 1 , 34273 ] 34273\bigr] 3 4 2 7 3 ]
y 2 + x y + y = x 3 − 2001 x + 34273 {y}^2+{x}{y}+{y}={x}^{3}-2001{x}+34273 y 2 + x y + y = x 3 − 2 0 0 1 x + 3 4 2 7 3
11025.1-c7
11025.1-c
8 8 8
16 16 1 6
Q ( − 3 ) \Q(\sqrt{-3}) Q ( − 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
11025.1
3 2 ⋅ 5 2 ⋅ 7 2 3^{2} \cdot 5^{2} \cdot 7^{2} 3 2 ⋅ 5 2 ⋅ 7 2
3 8 ⋅ 5 2 ⋅ 7 6 3^{8} \cdot 5^{2} \cdot 7^{6} 3 8 ⋅ 5 2 ⋅ 7 6
1.58597 1.58597 1 . 5 8 5 9 7
( − 2 a + 1 ) , ( − 3 a + 1 ) , ( 5 ) (-2a+1), (-3a+1), (5) ( − 2 a + 1 ) , ( − 3 a + 1 ) , ( 5 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 4 2^{4} 2 4
1 1 1
0.487870110 0.487870110 0 . 4 8 7 8 7 0 1 1 0
2.253375518
56667352321 15 \frac{56667352321}{15} 1 5 5 6 6 6 7 3 5 2 3 2 1
[ a + 1 \bigl[a + 1 [ a + 1 , − a − 1 -a - 1 − a − 1 , 1 1 1 , 1200 a + 720 1200 a + 720 1 2 0 0 a + 7 2 0 , 15971 a − 30723 ] 15971 a - 30723\bigr] 1 5 9 7 1 a − 3 0 7 2 3 ]
y 2 + ( a + 1 ) x y + y = x 3 + ( − a − 1 ) x 2 + ( 1200 a + 720 ) x + 15971 a − 30723 {y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(1200a+720\right){x}+15971a-30723 y 2 + ( a + 1 ) x y + y = x 3 + ( − a − 1 ) x 2 + ( 1 2 0 0 a + 7 2 0 ) x + 1 5 9 7 1 a − 3 0 7 2 3
11025.3-c7
11025.3-c
8 8 8
16 16 1 6
Q ( − 3 ) \Q(\sqrt{-3}) Q ( − 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
11025.3
3 2 ⋅ 5 2 ⋅ 7 2 3^{2} \cdot 5^{2} \cdot 7^{2} 3 2 ⋅ 5 2 ⋅ 7 2
3 8 ⋅ 5 2 ⋅ 7 6 3^{8} \cdot 5^{2} \cdot 7^{6} 3 8 ⋅ 5 2 ⋅ 7 6
1.58597 1.58597 1 . 5 8 5 9 7
( − 2 a + 1 ) , ( 3 a − 2 ) , ( 5 ) (-2a+1), (3a-2), (5) ( − 2 a + 1 ) , ( 3 a − 2 ) , ( 5 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 4 2^{4} 2 4
1 1 1
0.487870110 0.487870110 0 . 4 8 7 8 7 0 1 1 0
2.253375518
56667352321 15 \frac{56667352321}{15} 1 5 5 6 6 6 7 3 5 2 3 2 1
[ a + 1 \bigl[a + 1 [ a + 1 , a + 1 a + 1 a + 1 , 0 0 0 , − 718 a − 1201 -718 a - 1201 − 7 1 8 a − 1 2 0 1 , − 17891 a − 14032 ] -17891 a - 14032\bigr] − 1 7 8 9 1 a − 1 4 0 3 2 ]
y 2 + ( a + 1 ) x y = x 3 + ( a + 1 ) x 2 + ( − 718 a − 1201 ) x − 17891 a − 14032 {y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-718a-1201\right){x}-17891a-14032 y 2 + ( a + 1 ) x y = x 3 + ( a + 1 ) x 2 + ( − 7 1 8 a − 1 2 0 1 ) x − 1 7 8 9 1 a − 1 4 0 3 2
12675.1-a7
12675.1-a
8 8 8
16 16 1 6
Q ( − 3 ) \Q(\sqrt{-3}) Q ( − 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
12675.1
3 ⋅ 5 2 ⋅ 1 3 2 3 \cdot 5^{2} \cdot 13^{2} 3 ⋅ 5 2 ⋅ 1 3 2
3 2 ⋅ 5 2 ⋅ 1 3 6 3^{2} \cdot 5^{2} \cdot 13^{6} 3 2 ⋅ 5 2 ⋅ 1 3 6
1.64224 1.64224 1 . 6 4 2 2 4
( − 2 a + 1 ) , ( − 4 a + 1 ) , ( 5 ) (-2a+1), (-4a+1), (5) ( − 2 a + 1 ) , ( − 4 a + 1 ) , ( 5 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
4 4 4
2 2 2^{2} 2 2
1 1 1
0.620072089 0.620072089 0 . 6 2 0 0 7 2 0 8 9
2.863990301
56667352321 15 \frac{56667352321}{15} 1 5 5 6 6 6 7 3 5 2 3 2 1
[ 1 \bigl[1 [ 1 , a + 1 a + 1 a + 1 , 1 1 1 , − 639 a + 1200 -639 a + 1200 − 6 3 9 a + 1 2 0 0 , 9839 a + 5397 ] 9839 a + 5397\bigr] 9 8 3 9 a + 5 3 9 7 ]
y 2 + x y + y = x 3 + ( a + 1 ) x 2 + ( − 639 a + 1200 ) x + 9839 a + 5397 {y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-639a+1200\right){x}+9839a+5397 y 2 + x y + y = x 3 + ( a + 1 ) x 2 + ( − 6 3 9 a + 1 2 0 0 ) x + 9 8 3 9 a + 5 3 9 7
12675.3-a7
12675.3-a
8 8 8
16 16 1 6
Q ( − 3 ) \Q(\sqrt{-3}) Q ( − 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
12675.3
3 ⋅ 5 2 ⋅ 1 3 2 3 \cdot 5^{2} \cdot 13^{2} 3 ⋅ 5 2 ⋅ 1 3 2
3 2 ⋅ 5 2 ⋅ 1 3 6 3^{2} \cdot 5^{2} \cdot 13^{6} 3 2 ⋅ 5 2 ⋅ 1 3 6
1.64224 1.64224 1 . 6 4 2 2 4
( − 2 a + 1 ) , ( 4 a − 3 ) , ( 5 ) (-2a+1), (4a-3), (5) ( − 2 a + 1 ) , ( 4 a − 3 ) , ( 5 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
4 4 4
2 2 2^{2} 2 2
1 1 1
0.620072089 0.620072089 0 . 6 2 0 0 7 2 0 8 9
2.863990301
56667352321 15 \frac{56667352321}{15} 1 5 5 6 6 6 7 3 5 2 3 2 1
[ a \bigl[a [ a , − a − 1 -a - 1 − a − 1 , a a a , − 1200 a + 641 -1200 a + 641 − 1 2 0 0 a + 6 4 1 , − 9279 a + 14036 ] -9279 a + 14036\bigr] − 9 2 7 9 a + 1 4 0 3 6 ]
y 2 + a x y + a y = x 3 + ( − a − 1 ) x 2 + ( − 1200 a + 641 ) x − 9279 a + 14036 {y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-1200a+641\right){x}-9279a+14036 y 2 + a x y + a y = x 3 + ( − a − 1 ) x 2 + ( − 1 2 0 0 a + 6 4 1 ) x − 9 2 7 9 a + 1 4 0 3 6
19200.1-g7
19200.1-g
8 8 8
16 16 1 6
Q ( − 3 ) \Q(\sqrt{-3}) Q ( − 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
19200.1
2 8 ⋅ 3 ⋅ 5 2 2^{8} \cdot 3 \cdot 5^{2} 2 8 ⋅ 3 ⋅ 5 2
2 24 ⋅ 3 2 ⋅ 5 2 2^{24} \cdot 3^{2} \cdot 5^{2} 2 2 4 ⋅ 3 2 ⋅ 5 2
1.82190 1.82190 1 . 8 2 1 9 0
( − 2 a + 1 ) , ( 2 ) , ( 5 ) (-2a+1), (2), (5) ( − 2 a + 1 ) , ( 2 ) , ( 5 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
1.300312843 1.300312843 1 . 3 0 0 3 1 2 8 4 3
0.558925428 0.558925428 0 . 5 5 8 9 2 5 4 2 8
3.356843389
56667352321 15 \frac{56667352321}{15} 1 5 5 6 6 6 7 3 5 2 3 2 1
[ 0 \bigl[0 [ 0 , 1 1 1 , 0 0 0 , − 1280 -1280 − 1 2 8 0 , − 18060 ] -18060\bigr] − 1 8 0 6 0 ]
y 2 = x 3 + x 2 − 1280 x − 18060 {y}^2={x}^{3}+{x}^{2}-1280{x}-18060 y 2 = x 3 + x 2 − 1 2 8 0 x − 1 8 0 6 0
57600.1-j7
57600.1-j
8 8 8
16 16 1 6
Q ( − 3 ) \Q(\sqrt{-3}) Q ( − 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57600.1
2 8 ⋅ 3 2 ⋅ 5 2 2^{8} \cdot 3^{2} \cdot 5^{2} 2 8 ⋅ 3 2 ⋅ 5 2
2 24 ⋅ 3 8 ⋅ 5 2 2^{24} \cdot 3^{8} \cdot 5^{2} 2 2 4 ⋅ 3 8 ⋅ 5 2
2.39775 2.39775 2 . 3 9 7 7 5
( − 2 a + 1 ) , ( 2 ) , ( 5 ) (-2a+1), (2), (5) ( − 2 a + 1 ) , ( 2 ) , ( 5 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
2.664660740 2.664660740 2 . 6 6 4 6 6 0 7 4 0
0.322695746 0.322695746 0 . 3 2 2 6 9 5 7 4 6
3.971591054
56667352321 15 \frac{56667352321}{15} 1 5 5 6 6 6 7 3 5 2 3 2 1
[ 0 \bigl[0 [ 0 , − a − 1 -a - 1 − a − 1 , 0 0 0 , − 3840 a -3840 a − 3 8 4 0 a , 108360 a − 54180 ] 108360 a - 54180\bigr] 1 0 8 3 6 0 a − 5 4 1 8 0 ]
y 2 = x 3 + ( − a − 1 ) x 2 − 3840 a x + 108360 a − 54180 {y}^2={x}^{3}+\left(-a-1\right){x}^{2}-3840a{x}+108360a-54180 y 2 = x 3 + ( − a − 1 ) x 2 − 3 8 4 0 a x + 1 0 8 3 6 0 a − 5 4 1 8 0
57600.1-k7
57600.1-k
8 8 8
16 16 1 6
Q ( − 3 ) \Q(\sqrt{-3}) Q ( − 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57600.1
2 8 ⋅ 3 2 ⋅ 5 2 2^{8} \cdot 3^{2} \cdot 5^{2} 2 8 ⋅ 3 2 ⋅ 5 2
2 24 ⋅ 3 8 ⋅ 5 2 2^{24} \cdot 3^{8} \cdot 5^{2} 2 2 4 ⋅ 3 8 ⋅ 5 2
2.39775 2.39775 2 . 3 9 7 7 5
( − 2 a + 1 ) , ( 2 ) , ( 5 ) (-2a+1), (2), (5) ( − 2 a + 1 ) , ( 2 ) , ( 5 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
2.664660740 2.664660740 2 . 6 6 4 6 6 0 7 4 0
0.322695746 0.322695746 0 . 3 2 2 6 9 5 7 4 6
3.971591054
56667352321 15 \frac{56667352321}{15} 1 5 5 6 6 6 7 3 5 2 3 2 1
[ 0 \bigl[0 [ 0 , a + 1 a + 1 a + 1 , 0 0 0 , 3842 a − 3841 3842 a - 3841 3 8 4 2 a − 3 8 4 1 , − 104519 a + 50339 ] -104519 a + 50339\bigr] − 1 0 4 5 1 9 a + 5 0 3 3 9 ]
y 2 = x 3 + ( a + 1 ) x 2 + ( 3842 a − 3841 ) x − 104519 a + 50339 {y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(3842a-3841\right){x}-104519a+50339 y 2 = x 3 + ( a + 1 ) x 2 + ( 3 8 4 2 a − 3 8 4 1 ) x − 1 0 4 5 1 9 a + 5 0 3 3 9
81225.1-a7
81225.1-a
8 8 8
16 16 1 6
Q ( − 3 ) \Q(\sqrt{-3}) Q ( − 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
81225.1
3 2 ⋅ 5 2 ⋅ 1 9 2 3^{2} \cdot 5^{2} \cdot 19^{2} 3 2 ⋅ 5 2 ⋅ 1 9 2
3 8 ⋅ 5 2 ⋅ 1 9 6 3^{8} \cdot 5^{2} \cdot 19^{6} 3 8 ⋅ 5 2 ⋅ 1 9 6
2.61289 2.61289 2 . 6 1 2 8 9
( − 2 a + 1 ) , ( − 5 a + 3 ) , ( 5 ) (-2a+1), (-5a+3), (5) ( − 2 a + 1 ) , ( − 5 a + 3 ) , ( 5 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
2.013853729 2.013853729 2 . 0 1 3 8 5 3 7 2 9
0.296125925 0.296125925 0 . 2 9 6 1 2 5 9 2 5
2.754442525
56667352321 15 \frac{56667352321}{15} 1 5 5 6 6 6 7 3 5 2 3 2 1
[ a \bigl[a [ a , a a a , a + 1 a + 1 a + 1 , − 1201 a − 3841 -1201 a - 3841 − 1 2 0 1 a − 3 8 4 1 , 44286 a + 89262 ] 44286 a + 89262\bigr] 4 4 2 8 6 a + 8 9 2 6 2 ]
y 2 + a x y + ( a + 1 ) y = x 3 + a x 2 + ( − 1201 a − 3841 ) x + 44286 a + 89262 {y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-1201a-3841\right){x}+44286a+89262 y 2 + a x y + ( a + 1 ) y = x 3 + a x 2 + ( − 1 2 0 1 a − 3 8 4 1 ) x + 4 4 2 8 6 a + 8 9 2 6 2
81225.3-a7
81225.3-a
8 8 8
16 16 1 6
Q ( − 3 ) \Q(\sqrt{-3}) Q ( − 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
81225.3
3 2 ⋅ 5 2 ⋅ 1 9 2 3^{2} \cdot 5^{2} \cdot 19^{2} 3 2 ⋅ 5 2 ⋅ 1 9 2
3 8 ⋅ 5 2 ⋅ 1 9 6 3^{8} \cdot 5^{2} \cdot 19^{6} 3 8 ⋅ 5 2 ⋅ 1 9 6
2.61289 2.61289 2 . 6 1 2 8 9
( − 2 a + 1 ) , ( − 5 a + 2 ) , ( 5 ) (-2a+1), (-5a+2), (5) ( − 2 a + 1 ) , ( − 5 a + 2 ) , ( 5 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
2.013853729 2.013853729 2 . 0 1 3 8 5 3 7 2 9
0.296125925 0.296125925 0 . 2 9 6 1 2 5 9 2 5
2.754442525
56667352321 15 \frac{56667352321}{15} 1 5 5 6 6 6 7 3 5 2 3 2 1
[ 1 \bigl[1 [ 1 , a a a , a a a , 3841 a + 1200 3841 a + 1200 3 8 4 1 a + 1 2 0 0 , − 44287 a + 133549 ] -44287 a + 133549\bigr] − 4 4 2 8 7 a + 1 3 3 5 4 9 ]
y 2 + x y + a y = x 3 + a x 2 + ( 3841 a + 1200 ) x − 44287 a + 133549 {y}^2+{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(3841a+1200\right){x}-44287a+133549 y 2 + x y + a y = x 3 + a x 2 + ( 3 8 4 1 a + 1 2 0 0 ) x − 4 4 2 8 7 a + 1 3 3 5 4 9
102675.1-a7
102675.1-a
8 8 8
16 16 1 6
Q ( − 3 ) \Q(\sqrt{-3}) Q ( − 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
102675.1
3 ⋅ 5 2 ⋅ 3 7 2 3 \cdot 5^{2} \cdot 37^{2} 3 ⋅ 5 2 ⋅ 3 7 2
3 2 ⋅ 5 2 ⋅ 3 7 6 3^{2} \cdot 5^{2} \cdot 37^{6} 3 2 ⋅ 5 2 ⋅ 3 7 6
2.77055 2.77055 2 . 7 7 0 5 5
( − 2 a + 1 ) , ( − 7 a + 4 ) , ( 5 ) (-2a+1), (-7a+4), (5) ( − 2 a + 1 ) , ( − 7 a + 4 ) , ( 5 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
6.036317352 6.036317352 6 . 0 3 6 3 1 7 3 5 2
0.367547097 0.367547097 0 . 3 6 7 5 4 7 0 9 7
5.123708641
56667352321 15 \frac{56667352321}{15} 1 5 5 6 6 6 7 3 5 2 3 2 1
[ a + 1 \bigl[a + 1 [ a + 1 , − a + 1 -a + 1 − a + 1 , 0 0 0 , 560 a + 2641 560 a + 2641 5 6 0 a + 2 6 4 1 , − 69511 a + 50796 ] -69511 a + 50796\bigr] − 6 9 5 1 1 a + 5 0 7 9 6 ]
y 2 + ( a + 1 ) x y = x 3 + ( − a + 1 ) x 2 + ( 560 a + 2641 ) x − 69511 a + 50796 {y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(560a+2641\right){x}-69511a+50796 y 2 + ( a + 1 ) x y = x 3 + ( − a + 1 ) x 2 + ( 5 6 0 a + 2 6 4 1 ) x − 6 9 5 1 1 a + 5 0 7 9 6
102675.3-a7
102675.3-a
8 8 8
16 16 1 6
Q ( − 3 ) \Q(\sqrt{-3}) Q ( − 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
102675.3
3 ⋅ 5 2 ⋅ 3 7 2 3 \cdot 5^{2} \cdot 37^{2} 3 ⋅ 5 2 ⋅ 3 7 2
3 2 ⋅ 5 2 ⋅ 3 7 6 3^{2} \cdot 5^{2} \cdot 37^{6} 3 2 ⋅ 5 2 ⋅ 3 7 6
2.77055 2.77055 2 . 7 7 0 5 5
( − 2 a + 1 ) , ( − 7 a + 3 ) , ( 5 ) (-2a+1), (-7a+3), (5) ( − 2 a + 1 ) , ( − 7 a + 3 ) , ( 5 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
6.036317352 6.036317352 6 . 0 3 6 3 1 7 3 5 2
0.367547097 0.367547097 0 . 3 6 7 5 4 7 0 9 7
5.123708641
56667352321 15 \frac{56667352321}{15} 1 5 5 6 6 6 7 3 5 2 3 2 1
[ 1 \bigl[1 [ 1 , − a -a − a , 0 0 0 , 3201 a − 2641 3201 a - 2641 3 2 0 1 a − 2 6 4 1 , 69511 a − 18715 ] 69511 a - 18715\bigr] 6 9 5 1 1 a − 1 8 7 1 5 ]
y 2 + x y = x 3 − a x 2 + ( 3201 a − 2641 ) x + 69511 a − 18715 {y}^2+{x}{y}={x}^{3}-a{x}^{2}+\left(3201a-2641\right){x}+69511a-18715 y 2 + x y = x 3 − a x 2 + ( 3 2 0 1 a − 2 6 4 1 ) x + 6 9 5 1 1 a − 1 8 7 1 5