Learn more

Refine search


Results (13 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
75.1-a7 75.1-a \(\Q(\sqrt{-3}) \) \( 3 \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.235701712$ 0.322695746 \( \frac{56667352321}{15} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -80\) , \( 242\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-80{x}+242$
1875.1-b7 1875.1-b \(\Q(\sqrt{-3}) \) \( 3 \cdot 5^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.447140342$ 1.032626388 \( \frac{56667352321}{15} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -2001\) , \( 34273\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-2001{x}+34273$
11025.1-c7 11025.1-c \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 5^{2} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.487870110$ 2.253375518 \( \frac{56667352321}{15} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 1\) , \( 1200 a + 720\) , \( 15971 a - 30723\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(1200a+720\right){x}+15971a-30723$
11025.3-c7 11025.3-c \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 5^{2} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.487870110$ 2.253375518 \( \frac{56667352321}{15} \) \( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( -718 a - 1201\) , \( -17891 a - 14032\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-718a-1201\right){x}-17891a-14032$
12675.1-a7 12675.1-a \(\Q(\sqrt{-3}) \) \( 3 \cdot 5^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.620072089$ 2.863990301 \( \frac{56667352321}{15} \) \( \bigl[1\) , \( a + 1\) , \( 1\) , \( -639 a + 1200\) , \( 9839 a + 5397\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-639a+1200\right){x}+9839a+5397$
12675.3-a7 12675.3-a \(\Q(\sqrt{-3}) \) \( 3 \cdot 5^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.620072089$ 2.863990301 \( \frac{56667352321}{15} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( -1200 a + 641\) , \( -9279 a + 14036\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-1200a+641\right){x}-9279a+14036$
19200.1-g7 19200.1-g \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.300312843$ $0.558925428$ 3.356843389 \( \frac{56667352321}{15} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -1280\) , \( -18060\bigr] \) ${y}^2={x}^{3}+{x}^{2}-1280{x}-18060$
57600.1-j7 57600.1-j \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.664660740$ $0.322695746$ 3.971591054 \( \frac{56667352321}{15} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -3840 a\) , \( 108360 a - 54180\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}-3840a{x}+108360a-54180$
57600.1-k7 57600.1-k \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.664660740$ $0.322695746$ 3.971591054 \( \frac{56667352321}{15} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 3842 a - 3841\) , \( -104519 a + 50339\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(3842a-3841\right){x}-104519a+50339$
81225.1-a7 81225.1-a \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.013853729$ $0.296125925$ 2.754442525 \( \frac{56667352321}{15} \) \( \bigl[a\) , \( a\) , \( a + 1\) , \( -1201 a - 3841\) , \( 44286 a + 89262\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-1201a-3841\right){x}+44286a+89262$
81225.3-a7 81225.3-a \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.013853729$ $0.296125925$ 2.754442525 \( \frac{56667352321}{15} \) \( \bigl[1\) , \( a\) , \( a\) , \( 3841 a + 1200\) , \( -44287 a + 133549\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(3841a+1200\right){x}-44287a+133549$
102675.1-a7 102675.1-a \(\Q(\sqrt{-3}) \) \( 3 \cdot 5^{2} \cdot 37^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $6.036317352$ $0.367547097$ 5.123708641 \( \frac{56667352321}{15} \) \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 560 a + 2641\) , \( -69511 a + 50796\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(560a+2641\right){x}-69511a+50796$
102675.3-a7 102675.3-a \(\Q(\sqrt{-3}) \) \( 3 \cdot 5^{2} \cdot 37^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $6.036317352$ $0.367547097$ 5.123708641 \( \frac{56667352321}{15} \) \( \bigl[1\) , \( -a\) , \( 0\) , \( 3201 a - 2641\) , \( 69511 a - 18715\bigr] \) ${y}^2+{x}{y}={x}^{3}-a{x}^{2}+\left(3201a-2641\right){x}+69511a-18715$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.