Learn more

Refine search


Results (13 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
75.1-a7 75.1-a Q(3)\Q(\sqrt{-3}) 352 3 \cdot 5^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 2.2357017122.235701712 0.322695746 5666735232115 \frac{56667352321}{15} [1 \bigl[1 , 1 1 , 1 1 , 80 -80 , 242] 242\bigr] y2+xy+y=x3+x280x+242{y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-80{x}+242
1875.1-b7 1875.1-b Q(3)\Q(\sqrt{-3}) 354 3 \cdot 5^{4} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.4471403420.447140342 1.032626388 5666735232115 \frac{56667352321}{15} [1 \bigl[1 , 0 0 , 1 1 , 2001 -2001 , 34273] 34273\bigr] y2+xy+y=x32001x+34273{y}^2+{x}{y}+{y}={x}^{3}-2001{x}+34273
11025.1-c7 11025.1-c Q(3)\Q(\sqrt{-3}) 325272 3^{2} \cdot 5^{2} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.4878701100.487870110 2.253375518 5666735232115 \frac{56667352321}{15} [a+1 \bigl[a + 1 , a1 -a - 1 , 1 1 , 1200a+720 1200 a + 720 , 15971a30723] 15971 a - 30723\bigr] y2+(a+1)xy+y=x3+(a1)x2+(1200a+720)x+15971a30723{y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(1200a+720\right){x}+15971a-30723
11025.3-c7 11025.3-c Q(3)\Q(\sqrt{-3}) 325272 3^{2} \cdot 5^{2} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.4878701100.487870110 2.253375518 5666735232115 \frac{56667352321}{15} [a+1 \bigl[a + 1 , a+1 a + 1 , 0 0 , 718a1201 -718 a - 1201 , 17891a14032] -17891 a - 14032\bigr] y2+(a+1)xy=x3+(a+1)x2+(718a1201)x17891a14032{y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-718a-1201\right){x}-17891a-14032
12675.1-a7 12675.1-a Q(3)\Q(\sqrt{-3}) 352132 3 \cdot 5^{2} \cdot 13^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.6200720890.620072089 2.863990301 5666735232115 \frac{56667352321}{15} [1 \bigl[1 , a+1 a + 1 , 1 1 , 639a+1200 -639 a + 1200 , 9839a+5397] 9839 a + 5397\bigr] y2+xy+y=x3+(a+1)x2+(639a+1200)x+9839a+5397{y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-639a+1200\right){x}+9839a+5397
12675.3-a7 12675.3-a Q(3)\Q(\sqrt{-3}) 352132 3 \cdot 5^{2} \cdot 13^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.6200720890.620072089 2.863990301 5666735232115 \frac{56667352321}{15} [a \bigl[a , a1 -a - 1 , a a , 1200a+641 -1200 a + 641 , 9279a+14036] -9279 a + 14036\bigr] y2+axy+ay=x3+(a1)x2+(1200a+641)x9279a+14036{y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-1200a+641\right){x}-9279a+14036
19200.1-g7 19200.1-g Q(3)\Q(\sqrt{-3}) 28352 2^{8} \cdot 3 \cdot 5^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.3003128431.300312843 0.5589254280.558925428 3.356843389 5666735232115 \frac{56667352321}{15} [0 \bigl[0 , 1 1 , 0 0 , 1280 -1280 , 18060] -18060\bigr] y2=x3+x21280x18060{y}^2={x}^{3}+{x}^{2}-1280{x}-18060
57600.1-j7 57600.1-j Q(3)\Q(\sqrt{-3}) 283252 2^{8} \cdot 3^{2} \cdot 5^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 2.6646607402.664660740 0.3226957460.322695746 3.971591054 5666735232115 \frac{56667352321}{15} [0 \bigl[0 , a1 -a - 1 , 0 0 , 3840a -3840 a , 108360a54180] 108360 a - 54180\bigr] y2=x3+(a1)x23840ax+108360a54180{y}^2={x}^{3}+\left(-a-1\right){x}^{2}-3840a{x}+108360a-54180
57600.1-k7 57600.1-k Q(3)\Q(\sqrt{-3}) 283252 2^{8} \cdot 3^{2} \cdot 5^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 2.6646607402.664660740 0.3226957460.322695746 3.971591054 5666735232115 \frac{56667352321}{15} [0 \bigl[0 , a+1 a + 1 , 0 0 , 3842a3841 3842 a - 3841 , 104519a+50339] -104519 a + 50339\bigr] y2=x3+(a+1)x2+(3842a3841)x104519a+50339{y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(3842a-3841\right){x}-104519a+50339
81225.1-a7 81225.1-a Q(3)\Q(\sqrt{-3}) 3252192 3^{2} \cdot 5^{2} \cdot 19^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 2.0138537292.013853729 0.2961259250.296125925 2.754442525 5666735232115 \frac{56667352321}{15} [a \bigl[a , a a , a+1 a + 1 , 1201a3841 -1201 a - 3841 , 44286a+89262] 44286 a + 89262\bigr] y2+axy+(a+1)y=x3+ax2+(1201a3841)x+44286a+89262{y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-1201a-3841\right){x}+44286a+89262
81225.3-a7 81225.3-a Q(3)\Q(\sqrt{-3}) 3252192 3^{2} \cdot 5^{2} \cdot 19^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 2.0138537292.013853729 0.2961259250.296125925 2.754442525 5666735232115 \frac{56667352321}{15} [1 \bigl[1 , a a , a a , 3841a+1200 3841 a + 1200 , 44287a+133549] -44287 a + 133549\bigr] y2+xy+ay=x3+ax2+(3841a+1200)x44287a+133549{y}^2+{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(3841a+1200\right){x}-44287a+133549
102675.1-a7 102675.1-a Q(3)\Q(\sqrt{-3}) 352372 3 \cdot 5^{2} \cdot 37^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 6.0363173526.036317352 0.3675470970.367547097 5.123708641 5666735232115 \frac{56667352321}{15} [a+1 \bigl[a + 1 , a+1 -a + 1 , 0 0 , 560a+2641 560 a + 2641 , 69511a+50796] -69511 a + 50796\bigr] y2+(a+1)xy=x3+(a+1)x2+(560a+2641)x69511a+50796{y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(560a+2641\right){x}-69511a+50796
102675.3-a7 102675.3-a Q(3)\Q(\sqrt{-3}) 352372 3 \cdot 5^{2} \cdot 37^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 6.0363173526.036317352 0.3675470970.367547097 5.123708641 5666735232115 \frac{56667352321}{15} [1 \bigl[1 , a -a , 0 0 , 3201a2641 3201 a - 2641 , 69511a18715] 69511 a - 18715\bigr] y2+xy=x3ax2+(3201a2641)x+69511a18715{y}^2+{x}{y}={x}^{3}-a{x}^{2}+\left(3201a-2641\right){x}+69511a-18715
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.