Learn more

Refine search


Results (1-50 of 74037 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
25.1-CMa1 25.1-CMa Q(1)\Q(\sqrt{-1}) 52 5^{2} 0 Z/10Z\Z/10\Z 4-4 U(1)\mathrm{U}(1) 11 9.1954277219.195427721 0.183908554 1728 1728 [i+1 \bigl[i + 1 , i i , 1 1 , i1 -i - 1 , 0] 0\bigr] y2+(i+1)xy+y=x3+ix2+(i1)x{y}^2+\left(i+1\right){x}{y}+{y}={x}^{3}+i{x}^{2}+\left(-i-1\right){x}
25.3-CMa1 25.3-CMa Q(1)\Q(\sqrt{-1}) 52 5^{2} 0 Z/10Z\Z/10\Z 4-4 U(1)\mathrm{U}(1) 11 9.1954277219.195427721 0.183908554 1728 1728 [i+1 \bigl[i + 1 , i i , i i , 0 0 , 0] 0\bigr] y2+(i+1)xy+iy=x3+ix2{y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}+i{x}^{2}
64.1-CMa1 64.1-CMa Q(1)\Q(\sqrt{-1}) 26 2^{6} 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z 4-4 U(1)\mathrm{U}(1) 11 6.8751858186.875185818 0.429699113 1728 1728 [0 \bigl[0 , 0 0 , 0 0 , 1 -1 , 0] 0\bigr] y2=x3x{y}^2={x}^{3}-{x}
64.1-CMa2 64.1-CMa Q(1)\Q(\sqrt{-1}) 26 2^{6} 0 Z/4Z\Z/4\Z 16-16 U(1)\mathrm{U}(1) 11 6.8751858186.875185818 0.429699113 287496 287496 [i+1 \bigl[i + 1 , i i , 0 0 , 2 2 , 3i] 3 i\bigr] y2+(i+1)xy=x3+ix2+2x+3i{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+2{x}+3i
65.2-a1 65.2-a Q(1)\Q(\sqrt{-1}) 513 5 \cdot 13 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.8504366440.850436644 0.425218322 157034896049234432330078125a128574568523373376330078125 -\frac{157034896049234432}{330078125} a - \frac{128574568523373376}{330078125} [i+1 \bigl[i + 1 , 0 0 , i i , 239i399 239 i - 399 , 2869i+2627] -2869 i + 2627\bigr] y2+(i+1)xy+iy=x3+(239i399)x2869i+2627{y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}+\left(239i-399\right){x}-2869i+2627
65.2-a2 65.2-a Q(1)\Q(\sqrt{-1}) 513 5 \cdot 13 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 2.5513099342.551309934 0.425218322 208875340339234328125a162705582265634328125 -\frac{2088753403392}{34328125} a - \frac{1627055822656}{34328125} [i+1 \bigl[i + 1 , i+1 i + 1 , 1 1 , 15i+3 -15 i + 3 , 7i14] 7 i - 14\bigr] y2+(i+1)xy+y=x3+(i+1)x2+(15i+3)x+7i14{y}^2+\left(i+1\right){x}{y}+{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-15i+3\right){x}+7i-14
65.2-a3 65.2-a Q(1)\Q(\sqrt{-1}) 513 5 \cdot 13 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 7.6539298027.653929802 0.425218322 732672325a3306304325 \frac{732672}{325} a - \frac{3306304}{325} [i+1 \bigl[i + 1 , i+1 i + 1 , 1 1 , 2 -2 , i1] -i - 1\bigr] y2+(i+1)xy+y=x3+(i+1)x22xi1{y}^2+\left(i+1\right){x}{y}+{y}={x}^{3}+\left(i+1\right){x}^{2}-2{x}-i-1
65.2-a4 65.2-a Q(1)\Q(\sqrt{-1}) 513 5 \cdot 13 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.8504366440.850436644 0.425218322 111097411658752051249591064453125a48967136579709318449591064453125 \frac{1110974116587520512}{49591064453125} a - \frac{489671365797093184}{49591064453125} [i+1 \bigl[i + 1 , i+1 i + 1 , 1 1 , 60i+98 -60 i + 98 , 372i+410] 372 i + 410\bigr] y2+(i+1)xy+y=x3+(i+1)x2+(60i+98)x+372i+410{y}^2+\left(i+1\right){x}{y}+{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-60i+98\right){x}+372i+410
65.2-a5 65.2-a Q(1)\Q(\sqrt{-1}) 513 5 \cdot 13 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 7.6539298027.653929802 0.425218322 1183232845a851776845 -\frac{1183232}{845} a - \frac{851776}{845} [i+1 \bigl[i + 1 , 0 0 , i i , i+1 -i + 1 , 0] 0\bigr] y2+(i+1)xy+iy=x3+(i+1)x{y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}+\left(-i+1\right){x}
65.2-a6 65.2-a Q(1)\Q(\sqrt{-1}) 513 5 \cdot 13 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 2.5513099342.551309934 0.425218322 356394317312603351125a+580261889216603351125 \frac{356394317312}{603351125} a + \frac{580261889216}{603351125} [i+1 \bigl[i + 1 , 0 0 , i i , 4i4 4 i - 4 , 2i+5] -2 i + 5\bigr] y2+(i+1)xy+iy=x3+(4i4)x2i+5{y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}+\left(4i-4\right){x}-2i+5
65.3-a1 65.3-a Q(1)\Q(\sqrt{-1}) 513 5 \cdot 13 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.8504366440.850436644 0.425218322 157034896049234432330078125a128574568523373376330078125 \frac{157034896049234432}{330078125} a - \frac{128574568523373376}{330078125} [i+1 \bigl[i + 1 , i -i , i i , 240i399 -240 i - 399 , 2869i+2627] 2869 i + 2627\bigr] y2+(i+1)xy+iy=x3ix2+(240i399)x+2869i+2627{y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}-i{x}^{2}+\left(-240i-399\right){x}+2869i+2627
65.3-a2 65.3-a Q(1)\Q(\sqrt{-1}) 513 5 \cdot 13 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 2.5513099342.551309934 0.425218322 208875340339234328125a162705582265634328125 \frac{2088753403392}{34328125} a - \frac{1627055822656}{34328125} [i+1 \bigl[i + 1 , i1 i - 1 , i i , 14i+4 14 i + 4 , 7i+14] 7 i + 14\bigr] y2+(i+1)xy+iy=x3+(i1)x2+(14i+4)x+7i+14{y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}+\left(i-1\right){x}^{2}+\left(14i+4\right){x}+7i+14
65.3-a3 65.3-a Q(1)\Q(\sqrt{-1}) 513 5 \cdot 13 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 7.6539298027.653929802 0.425218322 732672325a3306304325 -\frac{732672}{325} a - \frac{3306304}{325} [i+1 \bigl[i + 1 , i1 i - 1 , i i , i1 -i - 1 , i+1] -i + 1\bigr] y2+(i+1)xy+iy=x3+(i1)x2+(i1)xi+1{y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}+\left(i-1\right){x}^{2}+\left(-i-1\right){x}-i+1
65.3-a4 65.3-a Q(1)\Q(\sqrt{-1}) 513 5 \cdot 13 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.8504366440.850436644 0.425218322 111097411658752051249591064453125a48967136579709318449591064453125 -\frac{1110974116587520512}{49591064453125} a - \frac{489671365797093184}{49591064453125} [i+1 \bigl[i + 1 , i1 i - 1 , i i , 59i+99 59 i + 99 , 372i410] 372 i - 410\bigr] y2+(i+1)xy+iy=x3+(i1)x2+(59i+99)x+372i410{y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}+\left(i-1\right){x}^{2}+\left(59i+99\right){x}+372i-410
65.3-a5 65.3-a Q(1)\Q(\sqrt{-1}) 513 5 \cdot 13 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 7.6539298027.653929802 0.425218322 1183232845a851776845 \frac{1183232}{845} a - \frac{851776}{845} [i+1 \bigl[i + 1 , i -i , i i , 1 1 , 0] 0\bigr] y2+(i+1)xy+iy=x3ix2+x{y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}-i{x}^{2}+{x}
65.3-a6 65.3-a Q(1)\Q(\sqrt{-1}) 513 5 \cdot 13 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 2.5513099342.551309934 0.425218322 356394317312603351125a+580261889216603351125 -\frac{356394317312}{603351125} a + \frac{580261889216}{603351125} [i+1 \bigl[i + 1 , i -i , i i , 5i4 -5 i - 4 , 2i+5] 2 i + 5\bigr] y2+(i+1)xy+iy=x3ix2+(5i4)x+2i+5{y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}-i{x}^{2}+\left(-5i-4\right){x}+2i+5
72.1-a1 72.1-a Q(1)\Q(\sqrt{-1}) 2332 2^{3} \cdot 3^{2} 0 Z/8Z\Z/8\Z SU(2)\mathrm{SU}(2) 11 1.8176735081.817673508 0.454418377 2076466561 \frac{207646}{6561} [i+1 \bigl[i + 1 , i -i , i+1 i + 1 , i4 -i - 4 , 22i] 22 i\bigr] y2+(i+1)xy+(i+1)y=x3ix2+(i4)x+22i{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(-i-4\right){x}+22i
72.1-a2 72.1-a Q(1)\Q(\sqrt{-1}) 2332 2^{3} \cdot 3^{2} 0 Z/8Z\Z/8\Z SU(2)\mathrm{SU}(2) 11 7.2706940357.270694035 0.454418377 20483 \frac{2048}{3} [0 \bigl[0 , 1 -1 , 0 0 , 1 1 , 0] 0\bigr] y2=x3x2+x{y}^2={x}^{3}-{x}^{2}+{x}
72.1-a3 72.1-a Q(1)\Q(\sqrt{-1}) 2332 2^{3} \cdot 3^{2} 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 7.2706940357.270694035 0.454418377 351529 \frac{35152}{9} [i+1 \bigl[i + 1 , i -i , i+1 i + 1 , i+1 -i + 1 , i] -i\bigr] y2+(i+1)xy+(i+1)y=x3ix2+(i+1)xi{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(-i+1\right){x}-i
72.1-a4 72.1-a Q(1)\Q(\sqrt{-1}) 2332 2^{3} \cdot 3^{2} 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 3.6353470173.635347017 0.454418377 155606881 \frac{1556068}{81} [i+1 \bigl[i + 1 , 0 0 , i+1 i + 1 , i+6 -i + 6 , 5i] -5 i\bigr] y2+(i+1)xy+(i+1)y=x3+(i+6)x5i{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i+6\right){x}-5i
72.1-a5 72.1-a Q(1)\Q(\sqrt{-1}) 2332 2^{3} \cdot 3^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 3.6353470173.635347017 0.454418377 287562283 \frac{28756228}{3} [i+1 \bigl[i + 1 , i -i , i+1 i + 1 , i+16 -i + 16 , 28i] -28 i\bigr] y2+(i+1)xy+(i+1)y=x3ix2+(i+16)x28i{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(-i+16\right){x}-28i
72.1-a6 72.1-a Q(1)\Q(\sqrt{-1}) 2332 2^{3} \cdot 3^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 1.8176735081.817673508 0.454418377 30656171549 \frac{3065617154}{9} [i+1 \bigl[i + 1 , 0 0 , i+1 i + 1 , i+96 -i + 96 , 347i] -347 i\bigr] y2+(i+1)xy+(i+1)y=x3+(i+96)x347i{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i+96\right){x}-347i
98.1-a1 98.1-a Q(1)\Q(\sqrt{-1}) 272 2 \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.8754171350.875417135 0.437708567 5483477316251835008 -\frac{548347731625}{1835008} [i \bigl[i , 0 0 , i i , 170 -170 , 874] 874\bigr] y2+ixy+iy=x3170x+874{y}^2+i{x}{y}+i{y}={x}^{3}-170{x}+874
98.1-a2 98.1-a Q(1)\Q(\sqrt{-1}) 272 2 \cdot 7^{2} 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 7.8787542167.878754216 0.437708567 1562528 -\frac{15625}{28} [i \bigl[i , 0 0 , i i , 0 0 , 0] 0\bigr] y2+ixy+iy=x3{y}^2+i{x}{y}+i{y}={x}^{3}
98.1-a3 98.1-a Q(1)\Q(\sqrt{-1}) 272 2 \cdot 7^{2} 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 2.6262514052.626251405 0.437708567 993837521952 \frac{9938375}{21952} [i \bigl[i , 0 0 , i i , 5 5 , 6] 6\bigr] y2+ixy+iy=x3+5x+6{y}^2+i{x}{y}+i{y}={x}^{3}+5{x}+6
98.1-a4 98.1-a Q(1)\Q(\sqrt{-1}) 272 2 \cdot 7^{2} 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 1.3131257021.313125702 0.437708567 4956477625941192 \frac{4956477625}{941192} [i \bigl[i , 0 0 , i i , 35 -35 , 70] 70\bigr] y2+ixy+iy=x335x+70{y}^2+i{x}{y}+i{y}={x}^{3}-35{x}+70
98.1-a5 98.1-a Q(1)\Q(\sqrt{-1}) 272 2 \cdot 7^{2} 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 3.9393771083.939377108 0.437708567 12878762598 \frac{128787625}{98} [i \bigl[i , 0 0 , i i , 10 -10 , 12] -12\bigr] y2+ixy+iy=x310x12{y}^2+i{x}{y}+i{y}={x}^{3}-10{x}-12
98.1-a6 98.1-a Q(1)\Q(\sqrt{-1}) 272 2 \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.4377085670.437708567 0.437708567 225143905569962525088 \frac{2251439055699625}{25088} [i \bigl[i , 0 0 , i i , 2730 -2730 , 55146] 55146\bigr] y2+ixy+iy=x32730x+55146{y}^2+i{x}{y}+i{y}={x}^{3}-2730{x}+55146
100.2-a1 100.2-a Q(1)\Q(\sqrt{-1}) 2252 2^{2} \cdot 5^{2} 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 3.2115478283.211547828 0.535257971 59648644625a119744792625 -\frac{59648644}{625} a - \frac{119744792}{625} [i+1 \bigl[i + 1 , i -i , i+1 i + 1 , 4i11 4 i - 11 , 11i12] 11 i - 12\bigr] y2+(i+1)xy+(i+1)y=x3ix2+(4i11)x+11i12{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(4i-11\right){x}+11i-12
100.2-a2 100.2-a Q(1)\Q(\sqrt{-1}) 2252 2^{2} \cdot 5^{2} 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 3.2115478283.211547828 0.535257971 59648644625a119744792625 \frac{59648644}{625} a - \frac{119744792}{625} [i+1 \bigl[i + 1 , 0 0 , i+1 i + 1 , 6i11 -6 i - 11 , 12i12] -12 i - 12\bigr] y2+(i+1)xy+(i+1)y=x3+(6i11)x12i12{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-6i-11\right){x}-12i-12
100.2-a3 100.2-a Q(1)\Q(\sqrt{-1}) 2252 2^{2} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.0705159421.070515942 0.535257971 893935595564244140625a1336401187352244140625 -\frac{893935595564}{244140625} a - \frac{1336401187352}{244140625} [i+1 \bigl[i + 1 , i -i , i+1 i + 1 , 54i1 54 i - 1 , 119i118] -119 i - 118\bigr] y2+(i+1)xy+(i+1)y=x3ix2+(54i1)x119i118{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(54i-1\right){x}-119i-118
100.2-a4 100.2-a Q(1)\Q(\sqrt{-1}) 2252 2^{2} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.0705159421.070515942 0.535257971 893935595564244140625a1336401187352244140625 \frac{893935595564}{244140625} a - \frac{1336401187352}{244140625} [i+1 \bigl[i + 1 , 0 0 , i+1 i + 1 , 56i1 -56 i - 1 , 118i118] 118 i - 118\bigr] y2+(i+1)xy+(i+1)y=x3+(56i1)x+118i118{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-56i-1\right){x}+118i-118
100.2-a5 100.2-a Q(1)\Q(\sqrt{-1}) 2252 2^{2} \cdot 5^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.1410318852.141031885 0.535257971 2072046415625 -\frac{20720464}{15625} [i+1 \bigl[i + 1 , 0 0 , i+1 i + 1 , i+9 -i + 9 , 17i] 17 i\bigr] y2+(i+1)xy+(i+1)y=x3+(i+9)x+17i{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i+9\right){x}+17i
100.2-a6 100.2-a Q(1)\Q(\sqrt{-1}) 2252 2^{2} \cdot 5^{2} 0 Z/2ZZ/6Z\Z/2\Z\oplus\Z/6\Z SU(2)\mathrm{SU}(2) 11 6.4230956566.423095656 0.535257971 2129625 \frac{21296}{25} [i+1 \bigl[i + 1 , 0 0 , i+1 i + 1 , i1 -i - 1 , i] -i\bigr] y2+(i+1)xy+(i+1)y=x3+(i1)xi{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}-i
100.2-a7 100.2-a Q(1)\Q(\sqrt{-1}) 2252 2^{2} \cdot 5^{2} 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 6.4230956566.423095656 0.535257971 163845 \frac{16384}{5} [0 \bigl[0 , 1 1 , 0 0 , 1 -1 , 0] 0\bigr] y2=x3+x2x{y}^2={x}^{3}+{x}^{2}-{x}
100.2-a8 100.2-a Q(1)\Q(\sqrt{-1}) 2252 2^{2} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.1410318852.141031885 0.535257971 488095744125 \frac{488095744}{125} [0 \bigl[0 , 1 1 , 0 0 , 41 -41 , 116] -116\bigr] y2=x3+x241x116{y}^2={x}^{3}+{x}^{2}-41{x}-116
106.1-a1 106.1-a Q(1)\Q(\sqrt{-1}) 253 2 \cdot 53 0 Z/9Z\Z/9\Z SU(2)\mathrm{SU}(2) 11 5.9853433325.985343332 0.665038148 245651696a+442171696 -\frac{24565}{1696} a + \frac{44217}{1696} [1 \bigl[1 , i1 i - 1 , i+1 i + 1 , i1 -i - 1 , 0] 0\bigr] y2+xy+(i+1)y=x3+(i1)x2+(i1)x{y}^2+{x}{y}+\left(i+1\right){y}={x}^{3}+\left(i-1\right){x}^{2}+\left(-i-1\right){x}
106.1-a2 106.1-a Q(1)\Q(\sqrt{-1}) 253 2 \cdot 53 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.6650381480.665038148 0.665038148 26647176836433887156599527183604266a+29953169933000770176599527183604266 \frac{2664717683643388715}{6599527183604266} a + \frac{2995316993300077017}{6599527183604266} [1 \bigl[1 , i1 i - 1 , i+1 i + 1 , 76i+14 -76 i + 14 , 225i+345] 225 i + 345\bigr] y2+xy+(i+1)y=x3+(i1)x2+(76i+14)x+225i+345{y}^2+{x}{y}+\left(i+1\right){y}={x}^{3}+\left(i-1\right){x}^{2}+\left(-76i+14\right){x}+225i+345
106.1-a3 106.1-a Q(1)\Q(\sqrt{-1}) 253 2 \cdot 53 0 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 11 1.9951144441.995114444 0.665038148 12075196954415595508a+199712312811595508 \frac{12075196954415}{595508} a + \frac{199712312811}{595508} [1 \bigl[1 , i1 i - 1 , i+1 i + 1 , 51i31 -51 i - 31 , 174i+30] 174 i + 30\bigr] y2+xy+(i+1)y=x3+(i1)x2+(51i31)x+174i+30{y}^2+{x}{y}+\left(i+1\right){y}={x}^{3}+\left(i-1\right){x}^{2}+\left(-51i-31\right){x}+174i+30
106.2-a1 106.2-a Q(1)\Q(\sqrt{-1}) 253 2 \cdot 53 0 Z/9Z\Z/9\Z SU(2)\mathrm{SU}(2) 11 5.9853433325.985343332 0.665038148 245651696a+442171696 \frac{24565}{1696} a + \frac{44217}{1696} [1 \bigl[1 , i1 -i - 1 , i+1 i + 1 , 1 -1 , i] -i\bigr] y2+xy+(i+1)y=x3+(i1)x2xi{y}^2+{x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}-{x}-i
106.2-a2 106.2-a Q(1)\Q(\sqrt{-1}) 253 2 \cdot 53 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.6650381480.665038148 0.665038148 26647176836433887156599527183604266a+29953169933000770176599527183604266 -\frac{2664717683643388715}{6599527183604266} a + \frac{2995316993300077017}{6599527183604266} [1 \bigl[1 , i1 -i - 1 , i+1 i + 1 , 75i+14 75 i + 14 , 226i+345] -226 i + 345\bigr] y2+xy+(i+1)y=x3+(i1)x2+(75i+14)x226i+345{y}^2+{x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(75i+14\right){x}-226i+345
106.2-a3 106.2-a Q(1)\Q(\sqrt{-1}) 253 2 \cdot 53 0 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 11 1.9951144441.995114444 0.665038148 12075196954415595508a+199712312811595508 -\frac{12075196954415}{595508} a + \frac{199712312811}{595508} [1 \bigl[1 , i1 -i - 1 , i+1 i + 1 , 50i31 50 i - 31 , 175i+30] -175 i + 30\bigr] y2+xy+(i+1)y=x3+(i1)x2+(50i31)x175i+30{y}^2+{x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(50i-31\right){x}-175i+30
121.1-a1 121.1-a Q(1)\Q(\sqrt{-1}) 112 11^{2} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.3703087240.370308724 0.370308724 5289315910115737611 -\frac{52893159101157376}{11} [0 \bigl[0 , 1 1 , i i , 7820 -7820 , 263580] 263580\bigr] y2+iy=x3+x27820x+263580{y}^2+i{y}={x}^{3}+{x}^{2}-7820{x}+263580
121.1-a2 121.1-a Q(1)\Q(\sqrt{-1}) 112 11^{2} 0 Z/5Z\Z/5\Z SU(2)\mathrm{SU}(2) 11 1.8515436231.851543623 0.370308724 122023936161051 -\frac{122023936}{161051} [0 \bigl[0 , 1 1 , i i , 10 -10 , 20] 20\bigr] y2+iy=x3+x210x+20{y}^2+i{y}={x}^{3}+{x}^{2}-10{x}+20
121.1-a3 121.1-a Q(1)\Q(\sqrt{-1}) 112 11^{2} 0 Z/5Z\Z/5\Z SU(2)\mathrm{SU}(2) 11 9.2577181179.257718117 0.370308724 409611 -\frac{4096}{11} [0 \bigl[0 , 1 1 , i i , 0 0 , 0] 0\bigr] y2+iy=x3+x2{y}^2+i{y}={x}^{3}+{x}^{2}
130.1-a1 130.1-a Q(1)\Q(\sqrt{-1}) 2513 2 \cdot 5 \cdot 13 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.9607263890.960726389 0.480363194 27686116301139113000000000a33515586556057812500000 \frac{276861163011391}{13000000000} a - \frac{33515586556057}{812500000} [i \bigl[i , i+1 -i + 1 , i i , 89i50 89 i - 50 , 368i+14] -368 i + 14\bigr] y2+ixy+iy=x3+(i+1)x2+(89i50)x368i+14{y}^2+i{x}{y}+i{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(89i-50\right){x}-368i+14
130.1-a2 130.1-a Q(1)\Q(\sqrt{-1}) 2513 2 \cdot 5 \cdot 13 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 2.8821791682.882179168 0.480363194 375250443192197000a7169596274274625 -\frac{37525044319}{2197000} a - \frac{7169596274}{274625} [i \bigl[i , i+1 -i + 1 , i i , 9i+5 9 i + 5 , 2i+18] 2 i + 18\bigr] y2+ixy+iy=x3+(i+1)x2+(9i+5)x+2i+18{y}^2+i{x}{y}+i{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(9i+5\right){x}+2i+18
130.1-a3 130.1-a Q(1)\Q(\sqrt{-1}) 2513 2 \cdot 5 \cdot 13 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 1.4410895841.441089584 0.480363194 133816114442969301675562500a19082395919017301675562500 -\frac{133816114442969}{301675562500} a - \frac{19082395919017}{301675562500} [i \bigl[i , i+1 -i + 1 , i i , i+15 -i + 15 , 30i+30] 30 i + 30\bigr] y2+ixy+iy=x3+(i+1)x2+(i+15)x+30i+30{y}^2+i{x}{y}+i{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(-i+15\right){x}+30i+30
130.1-a4 130.1-a Q(1)\Q(\sqrt{-1}) 2513 2 \cdot 5 \cdot 13 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.4803631940.480363194 0.480363194 841801531238789722320629882812500000a+278326690713143728920629882812500000 \frac{8418015312387897223}{20629882812500000} a + \frac{2783266907131437289}{20629882812500000} [i \bigl[i , i+1 -i + 1 , i i , 9i130 9 i - 130 , 688i882] -688 i - 882\bigr] y2+ixy+iy=x3+(i+1)x2+(9i130)x688i882{y}^2+i{x}{y}+i{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(9i-130\right){x}-688i-882
130.1-a5 130.1-a Q(1)\Q(\sqrt{-1}) 2513 2 \cdot 5 \cdot 13 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 8.6465375068.646537506 0.480363194 31409130a+10134465 -\frac{31409}{130} a + \frac{101344}{65} [i \bigl[i , i+1 -i + 1 , i i , i -i , 0] 0\bigr] y2+ixy+iy=x3+(i+1)x2ix{y}^2+i{x}{y}+i{y}={x}^{3}+\left(-i+1\right){x}^{2}-i{x}
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.