25.1-CMa1
25.1-CMa
1 1 1
1 1 1
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25.1
5 2 5^{2} 5 2
5 3 5^{3} 5 3
0.39963 0.39963 0 . 3 9 9 6 3
( − a − 2 ) (-a-2) ( − a − 2 )
0
Z / 10 Z \Z/10\Z Z / 1 0 Z
yes \textsf{yes} yes
− 4 -4 − 4
U ( 1 ) \mathrm{U}(1) U ( 1 )
✓
✓
5 5 5
5Cs.1.1
1 1 1
2 2 2
1 1 1
9.195427721 9.195427721 9 . 1 9 5 4 2 7 7 2 1
0.183908554
1728 1728 1 7 2 8
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 1 1 1 , − i − 1 -i - 1 − i − 1 , 0 ] 0\bigr] 0 ]
y 2 + ( i + 1 ) x y + y = x 3 + i x 2 + ( − i − 1 ) x {y}^2+\left(i+1\right){x}{y}+{y}={x}^{3}+i{x}^{2}+\left(-i-1\right){x} y 2 + ( i + 1 ) x y + y = x 3 + i x 2 + ( − i − 1 ) x
25.3-CMa1
25.3-CMa
1 1 1
1 1 1
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25.3
5 2 5^{2} 5 2
5 3 5^{3} 5 3
0.39963 0.39963 0 . 3 9 9 6 3
( 2 a + 1 ) (2a+1) ( 2 a + 1 )
0
Z / 10 Z \Z/10\Z Z / 1 0 Z
yes \textsf{yes} yes
− 4 -4 − 4
U ( 1 ) \mathrm{U}(1) U ( 1 )
✓
✓
5 5 5
5Cs.1.1
1 1 1
2 2 2
1 1 1
9.195427721 9.195427721 9 . 1 9 5 4 2 7 7 2 1
0.183908554
1728 1728 1 7 2 8
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , i i i , 0 0 0 , 0 ] 0\bigr] 0 ]
y 2 + ( i + 1 ) x y + i y = x 3 + i x 2 {y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}+i{x}^{2} y 2 + ( i + 1 ) x y + i y = x 3 + i x 2
64.1-CMa1
64.1-CMa
2 2 2
2 2 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
64.1
2 6 2^{6} 2 6
2 12 2^{12} 2 1 2
0.50549 0.50549 0 . 5 0 5 4 9
( a + 1 ) (a+1) ( a + 1 )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
yes \textsf{yes} yes
− 4 -4 − 4
U ( 1 ) \mathrm{U}(1) U ( 1 )
✓
✓
✓
2 2 2
2Cs
1 1 1
2 2 2^{2} 2 2
1 1 1
6.875185818 6.875185818 6 . 8 7 5 1 8 5 8 1 8
0.429699113
1728 1728 1 7 2 8
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 1 -1 − 1 , 0 ] 0\bigr] 0 ]
y 2 = x 3 − x {y}^2={x}^{3}-{x} y 2 = x 3 − x
64.1-CMa2
64.1-CMa
2 2 2
2 2 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
64.1
2 6 2^{6} 2 6
2 6 2^{6} 2 6
0.50549 0.50549 0 . 5 0 5 4 9
( a + 1 ) (a+1) ( a + 1 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
yes \textsf{yes} yes
− 16 -16 − 1 6
U ( 1 ) \mathrm{U}(1) U ( 1 )
✓
✓
✓
1 1 1
1 1 1
1 1 1
6.875185818 6.875185818 6 . 8 7 5 1 8 5 8 1 8
0.429699113
287496 287496 2 8 7 4 9 6
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , 2 2 2 , 3 i ] 3 i\bigr] 3 i ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + 2 x + 3 i {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+2{x}+3i y 2 + ( i + 1 ) x y = x 3 + i x 2 + 2 x + 3 i
65.2-a1
65.2-a
6 6 6
18 18 1 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
65.2
5 ⋅ 13 5 \cdot 13 5 ⋅ 1 3
5 9 ⋅ 1 3 2 5^{9} \cdot 13^{2} 5 9 ⋅ 1 3 2
0.50745 0.50745 0 . 5 0 7 4 5
( − a − 2 ) , ( 2 a + 3 ) (-a-2), (2a+3) ( − a − 2 ) , ( 2 a + 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 2
1 1 1
0.850436644 0.850436644 0 . 8 5 0 4 3 6 6 4 4
0.425218322
− 157034896049234432 330078125 a − 128574568523373376 330078125 -\frac{157034896049234432}{330078125} a - \frac{128574568523373376}{330078125} − 3 3 0 0 7 8 1 2 5 1 5 7 0 3 4 8 9 6 0 4 9 2 3 4 4 3 2 a − 3 3 0 0 7 8 1 2 5 1 2 8 5 7 4 5 6 8 5 2 3 3 7 3 3 7 6
[ i + 1 \bigl[i + 1 [ i + 1 , 0 0 0 , i i i , 239 i − 399 239 i - 399 2 3 9 i − 3 9 9 , − 2869 i + 2627 ] -2869 i + 2627\bigr] − 2 8 6 9 i + 2 6 2 7 ]
y 2 + ( i + 1 ) x y + i y = x 3 + ( 239 i − 399 ) x − 2869 i + 2627 {y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}+\left(239i-399\right){x}-2869i+2627 y 2 + ( i + 1 ) x y + i y = x 3 + ( 2 3 9 i − 3 9 9 ) x − 2 8 6 9 i + 2 6 2 7
65.2-a2
65.2-a
6 6 6
18 18 1 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
65.2
5 ⋅ 13 5 \cdot 13 5 ⋅ 1 3
5 6 ⋅ 1 3 3 5^{6} \cdot 13^{3} 5 6 ⋅ 1 3 3
0.50745 0.50745 0 . 5 0 7 4 5
( − a − 2 ) , ( 2 a + 3 ) (-a-2), (2a+3) ( − a − 2 ) , ( 2 a + 3 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3Cs.1.1
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
2.551309934 2.551309934 2 . 5 5 1 3 0 9 9 3 4
0.425218322
− 2088753403392 34328125 a − 1627055822656 34328125 -\frac{2088753403392}{34328125} a - \frac{1627055822656}{34328125} − 3 4 3 2 8 1 2 5 2 0 8 8 7 5 3 4 0 3 3 9 2 a − 3 4 3 2 8 1 2 5 1 6 2 7 0 5 5 8 2 2 6 5 6
[ i + 1 \bigl[i + 1 [ i + 1 , i + 1 i + 1 i + 1 , 1 1 1 , − 15 i + 3 -15 i + 3 − 1 5 i + 3 , 7 i − 14 ] 7 i - 14\bigr] 7 i − 1 4 ]
y 2 + ( i + 1 ) x y + y = x 3 + ( i + 1 ) x 2 + ( − 15 i + 3 ) x + 7 i − 14 {y}^2+\left(i+1\right){x}{y}+{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-15i+3\right){x}+7i-14 y 2 + ( i + 1 ) x y + y = x 3 + ( i + 1 ) x 2 + ( − 1 5 i + 3 ) x + 7 i − 1 4
65.2-a3
65.2-a
6 6 6
18 18 1 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
65.2
5 ⋅ 13 5 \cdot 13 5 ⋅ 1 3
5 2 ⋅ 13 5^{2} \cdot 13 5 2 ⋅ 1 3
0.50745 0.50745 0 . 5 0 7 4 5
( − a − 2 ) , ( 2 a + 3 ) (-a-2), (2a+3) ( − a − 2 ) , ( 2 a + 3 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 2 2
1 1 1
7.653929802 7.653929802 7 . 6 5 3 9 2 9 8 0 2
0.425218322
732672 325 a − 3306304 325 \frac{732672}{325} a - \frac{3306304}{325} 3 2 5 7 3 2 6 7 2 a − 3 2 5 3 3 0 6 3 0 4
[ i + 1 \bigl[i + 1 [ i + 1 , i + 1 i + 1 i + 1 , 1 1 1 , − 2 -2 − 2 , − i − 1 ] -i - 1\bigr] − i − 1 ]
y 2 + ( i + 1 ) x y + y = x 3 + ( i + 1 ) x 2 − 2 x − i − 1 {y}^2+\left(i+1\right){x}{y}+{y}={x}^{3}+\left(i+1\right){x}^{2}-2{x}-i-1 y 2 + ( i + 1 ) x y + y = x 3 + ( i + 1 ) x 2 − 2 x − i − 1
65.2-a4
65.2-a
6 6 6
18 18 1 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
65.2
5 ⋅ 13 5 \cdot 13 5 ⋅ 1 3
5 18 ⋅ 13 5^{18} \cdot 13 5 1 8 ⋅ 1 3
0.50745 0.50745 0 . 5 0 7 4 5
( − a − 2 ) , ( 2 a + 3 ) (-a-2), (2a+3) ( − a − 2 ) , ( 2 a + 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 2
1 1 1
0.850436644 0.850436644 0 . 8 5 0 4 3 6 6 4 4
0.425218322
1110974116587520512 49591064453125 a − 489671365797093184 49591064453125 \frac{1110974116587520512}{49591064453125} a - \frac{489671365797093184}{49591064453125} 4 9 5 9 1 0 6 4 4 5 3 1 2 5 1 1 1 0 9 7 4 1 1 6 5 8 7 5 2 0 5 1 2 a − 4 9 5 9 1 0 6 4 4 5 3 1 2 5 4 8 9 6 7 1 3 6 5 7 9 7 0 9 3 1 8 4
[ i + 1 \bigl[i + 1 [ i + 1 , i + 1 i + 1 i + 1 , 1 1 1 , − 60 i + 98 -60 i + 98 − 6 0 i + 9 8 , 372 i + 410 ] 372 i + 410\bigr] 3 7 2 i + 4 1 0 ]
y 2 + ( i + 1 ) x y + y = x 3 + ( i + 1 ) x 2 + ( − 60 i + 98 ) x + 372 i + 410 {y}^2+\left(i+1\right){x}{y}+{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-60i+98\right){x}+372i+410 y 2 + ( i + 1 ) x y + y = x 3 + ( i + 1 ) x 2 + ( − 6 0 i + 9 8 ) x + 3 7 2 i + 4 1 0
65.2-a5
65.2-a
6 6 6
18 18 1 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
65.2
5 ⋅ 13 5 \cdot 13 5 ⋅ 1 3
5 ⋅ 1 3 2 5 \cdot 13^{2} 5 ⋅ 1 3 2
0.50745 0.50745 0 . 5 0 7 4 5
( − a − 2 ) , ( 2 a + 3 ) (-a-2), (2a+3) ( − a − 2 ) , ( 2 a + 3 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 2 2
1 1 1
7.653929802 7.653929802 7 . 6 5 3 9 2 9 8 0 2
0.425218322
− 1183232 845 a − 851776 845 -\frac{1183232}{845} a - \frac{851776}{845} − 8 4 5 1 1 8 3 2 3 2 a − 8 4 5 8 5 1 7 7 6
[ i + 1 \bigl[i + 1 [ i + 1 , 0 0 0 , i i i , − i + 1 -i + 1 − i + 1 , 0 ] 0\bigr] 0 ]
y 2 + ( i + 1 ) x y + i y = x 3 + ( − i + 1 ) x {y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}+\left(-i+1\right){x} y 2 + ( i + 1 ) x y + i y = x 3 + ( − i + 1 ) x
65.2-a6
65.2-a
6 6 6
18 18 1 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
65.2
5 ⋅ 13 5 \cdot 13 5 ⋅ 1 3
5 3 ⋅ 1 3 6 5^{3} \cdot 13^{6} 5 3 ⋅ 1 3 6
0.50745 0.50745 0 . 5 0 7 4 5
( − a − 2 ) , ( 2 a + 3 ) (-a-2), (2a+3) ( − a − 2 ) , ( 2 a + 3 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3Cs.1.1
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
2.551309934 2.551309934 2 . 5 5 1 3 0 9 9 3 4
0.425218322
356394317312 603351125 a + 580261889216 603351125 \frac{356394317312}{603351125} a + \frac{580261889216}{603351125} 6 0 3 3 5 1 1 2 5 3 5 6 3 9 4 3 1 7 3 1 2 a + 6 0 3 3 5 1 1 2 5 5 8 0 2 6 1 8 8 9 2 1 6
[ i + 1 \bigl[i + 1 [ i + 1 , 0 0 0 , i i i , 4 i − 4 4 i - 4 4 i − 4 , − 2 i + 5 ] -2 i + 5\bigr] − 2 i + 5 ]
y 2 + ( i + 1 ) x y + i y = x 3 + ( 4 i − 4 ) x − 2 i + 5 {y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}+\left(4i-4\right){x}-2i+5 y 2 + ( i + 1 ) x y + i y = x 3 + ( 4 i − 4 ) x − 2 i + 5
65.3-a1
65.3-a
6 6 6
18 18 1 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
65.3
5 ⋅ 13 5 \cdot 13 5 ⋅ 1 3
5 9 ⋅ 1 3 2 5^{9} \cdot 13^{2} 5 9 ⋅ 1 3 2
0.50745 0.50745 0 . 5 0 7 4 5
( 2 a + 1 ) , ( − 3 a − 2 ) (2a+1), (-3a-2) ( 2 a + 1 ) , ( − 3 a − 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 2
1 1 1
0.850436644 0.850436644 0 . 8 5 0 4 3 6 6 4 4
0.425218322
157034896049234432 330078125 a − 128574568523373376 330078125 \frac{157034896049234432}{330078125} a - \frac{128574568523373376}{330078125} 3 3 0 0 7 8 1 2 5 1 5 7 0 3 4 8 9 6 0 4 9 2 3 4 4 3 2 a − 3 3 0 0 7 8 1 2 5 1 2 8 5 7 4 5 6 8 5 2 3 3 7 3 3 7 6
[ i + 1 \bigl[i + 1 [ i + 1 , − i -i − i , i i i , − 240 i − 399 -240 i - 399 − 2 4 0 i − 3 9 9 , 2869 i + 2627 ] 2869 i + 2627\bigr] 2 8 6 9 i + 2 6 2 7 ]
y 2 + ( i + 1 ) x y + i y = x 3 − i x 2 + ( − 240 i − 399 ) x + 2869 i + 2627 {y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}-i{x}^{2}+\left(-240i-399\right){x}+2869i+2627 y 2 + ( i + 1 ) x y + i y = x 3 − i x 2 + ( − 2 4 0 i − 3 9 9 ) x + 2 8 6 9 i + 2 6 2 7
65.3-a2
65.3-a
6 6 6
18 18 1 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
65.3
5 ⋅ 13 5 \cdot 13 5 ⋅ 1 3
5 6 ⋅ 1 3 3 5^{6} \cdot 13^{3} 5 6 ⋅ 1 3 3
0.50745 0.50745 0 . 5 0 7 4 5
( 2 a + 1 ) , ( − 3 a − 2 ) (2a+1), (-3a-2) ( 2 a + 1 ) , ( − 3 a − 2 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3Cs.1.1
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
2.551309934 2.551309934 2 . 5 5 1 3 0 9 9 3 4
0.425218322
2088753403392 34328125 a − 1627055822656 34328125 \frac{2088753403392}{34328125} a - \frac{1627055822656}{34328125} 3 4 3 2 8 1 2 5 2 0 8 8 7 5 3 4 0 3 3 9 2 a − 3 4 3 2 8 1 2 5 1 6 2 7 0 5 5 8 2 2 6 5 6
[ i + 1 \bigl[i + 1 [ i + 1 , i − 1 i - 1 i − 1 , i i i , 14 i + 4 14 i + 4 1 4 i + 4 , 7 i + 14 ] 7 i + 14\bigr] 7 i + 1 4 ]
y 2 + ( i + 1 ) x y + i y = x 3 + ( i − 1 ) x 2 + ( 14 i + 4 ) x + 7 i + 14 {y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}+\left(i-1\right){x}^{2}+\left(14i+4\right){x}+7i+14 y 2 + ( i + 1 ) x y + i y = x 3 + ( i − 1 ) x 2 + ( 1 4 i + 4 ) x + 7 i + 1 4
65.3-a3
65.3-a
6 6 6
18 18 1 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
65.3
5 ⋅ 13 5 \cdot 13 5 ⋅ 1 3
5 2 ⋅ 13 5^{2} \cdot 13 5 2 ⋅ 1 3
0.50745 0.50745 0 . 5 0 7 4 5
( 2 a + 1 ) , ( − 3 a − 2 ) (2a+1), (-3a-2) ( 2 a + 1 ) , ( − 3 a − 2 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 2 2
1 1 1
7.653929802 7.653929802 7 . 6 5 3 9 2 9 8 0 2
0.425218322
− 732672 325 a − 3306304 325 -\frac{732672}{325} a - \frac{3306304}{325} − 3 2 5 7 3 2 6 7 2 a − 3 2 5 3 3 0 6 3 0 4
[ i + 1 \bigl[i + 1 [ i + 1 , i − 1 i - 1 i − 1 , i i i , − i − 1 -i - 1 − i − 1 , − i + 1 ] -i + 1\bigr] − i + 1 ]
y 2 + ( i + 1 ) x y + i y = x 3 + ( i − 1 ) x 2 + ( − i − 1 ) x − i + 1 {y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}+\left(i-1\right){x}^{2}+\left(-i-1\right){x}-i+1 y 2 + ( i + 1 ) x y + i y = x 3 + ( i − 1 ) x 2 + ( − i − 1 ) x − i + 1
65.3-a4
65.3-a
6 6 6
18 18 1 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
65.3
5 ⋅ 13 5 \cdot 13 5 ⋅ 1 3
5 18 ⋅ 13 5^{18} \cdot 13 5 1 8 ⋅ 1 3
0.50745 0.50745 0 . 5 0 7 4 5
( 2 a + 1 ) , ( − 3 a − 2 ) (2a+1), (-3a-2) ( 2 a + 1 ) , ( − 3 a − 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 2
1 1 1
0.850436644 0.850436644 0 . 8 5 0 4 3 6 6 4 4
0.425218322
− 1110974116587520512 49591064453125 a − 489671365797093184 49591064453125 -\frac{1110974116587520512}{49591064453125} a - \frac{489671365797093184}{49591064453125} − 4 9 5 9 1 0 6 4 4 5 3 1 2 5 1 1 1 0 9 7 4 1 1 6 5 8 7 5 2 0 5 1 2 a − 4 9 5 9 1 0 6 4 4 5 3 1 2 5 4 8 9 6 7 1 3 6 5 7 9 7 0 9 3 1 8 4
[ i + 1 \bigl[i + 1 [ i + 1 , i − 1 i - 1 i − 1 , i i i , 59 i + 99 59 i + 99 5 9 i + 9 9 , 372 i − 410 ] 372 i - 410\bigr] 3 7 2 i − 4 1 0 ]
y 2 + ( i + 1 ) x y + i y = x 3 + ( i − 1 ) x 2 + ( 59 i + 99 ) x + 372 i − 410 {y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}+\left(i-1\right){x}^{2}+\left(59i+99\right){x}+372i-410 y 2 + ( i + 1 ) x y + i y = x 3 + ( i − 1 ) x 2 + ( 5 9 i + 9 9 ) x + 3 7 2 i − 4 1 0
65.3-a5
65.3-a
6 6 6
18 18 1 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
65.3
5 ⋅ 13 5 \cdot 13 5 ⋅ 1 3
5 ⋅ 1 3 2 5 \cdot 13^{2} 5 ⋅ 1 3 2
0.50745 0.50745 0 . 5 0 7 4 5
( 2 a + 1 ) , ( − 3 a − 2 ) (2a+1), (-3a-2) ( 2 a + 1 ) , ( − 3 a − 2 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 2 2
1 1 1
7.653929802 7.653929802 7 . 6 5 3 9 2 9 8 0 2
0.425218322
1183232 845 a − 851776 845 \frac{1183232}{845} a - \frac{851776}{845} 8 4 5 1 1 8 3 2 3 2 a − 8 4 5 8 5 1 7 7 6
[ i + 1 \bigl[i + 1 [ i + 1 , − i -i − i , i i i , 1 1 1 , 0 ] 0\bigr] 0 ]
y 2 + ( i + 1 ) x y + i y = x 3 − i x 2 + x {y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}-i{x}^{2}+{x} y 2 + ( i + 1 ) x y + i y = x 3 − i x 2 + x
65.3-a6
65.3-a
6 6 6
18 18 1 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
65.3
5 ⋅ 13 5 \cdot 13 5 ⋅ 1 3
5 3 ⋅ 1 3 6 5^{3} \cdot 13^{6} 5 3 ⋅ 1 3 6
0.50745 0.50745 0 . 5 0 7 4 5
( 2 a + 1 ) , ( − 3 a − 2 ) (2a+1), (-3a-2) ( 2 a + 1 ) , ( − 3 a − 2 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3Cs.1.1
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
2.551309934 2.551309934 2 . 5 5 1 3 0 9 9 3 4
0.425218322
− 356394317312 603351125 a + 580261889216 603351125 -\frac{356394317312}{603351125} a + \frac{580261889216}{603351125} − 6 0 3 3 5 1 1 2 5 3 5 6 3 9 4 3 1 7 3 1 2 a + 6 0 3 3 5 1 1 2 5 5 8 0 2 6 1 8 8 9 2 1 6
[ i + 1 \bigl[i + 1 [ i + 1 , − i -i − i , i i i , − 5 i − 4 -5 i - 4 − 5 i − 4 , 2 i + 5 ] 2 i + 5\bigr] 2 i + 5 ]
y 2 + ( i + 1 ) x y + i y = x 3 − i x 2 + ( − 5 i − 4 ) x + 2 i + 5 {y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}-i{x}^{2}+\left(-5i-4\right){x}+2i+5 y 2 + ( i + 1 ) x y + i y = x 3 − i x 2 + ( − 5 i − 4 ) x + 2 i + 5
72.1-a1
72.1-a
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
72.1
2 3 ⋅ 3 2 2^{3} \cdot 3^{2} 2 3 ⋅ 3 2
2 10 ⋅ 3 16 2^{10} \cdot 3^{16} 2 1 0 ⋅ 3 1 6
0.52060 0.52060 0 . 5 2 0 6 0
( a + 1 ) , ( 3 ) (a+1), (3) ( a + 1 ) , ( 3 )
0
Z / 8 Z \Z/8\Z Z / 8 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 4 2^{4} 2 4
1 1 1
1.817673508 1.817673508 1 . 8 1 7 6 7 3 5 0 8
0.454418377
207646 6561 \frac{207646}{6561} 6 5 6 1 2 0 7 6 4 6
[ i + 1 \bigl[i + 1 [ i + 1 , − i -i − i , i + 1 i + 1 i + 1 , − i − 4 -i - 4 − i − 4 , 22 i ] 22 i\bigr] 2 2 i ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 − i x 2 + ( − i − 4 ) x + 22 i {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(-i-4\right){x}+22i y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 − i x 2 + ( − i − 4 ) x + 2 2 i
72.1-a2
72.1-a
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
72.1
2 3 ⋅ 3 2 2^{3} \cdot 3^{2} 2 3 ⋅ 3 2
2 8 ⋅ 3 2 2^{8} \cdot 3^{2} 2 8 ⋅ 3 2
0.52060 0.52060 0 . 5 2 0 6 0
( a + 1 ) , ( 3 ) (a+1), (3) ( a + 1 ) , ( 3 )
0
Z / 8 Z \Z/8\Z Z / 8 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
1 1 1
7.270694035 7.270694035 7 . 2 7 0 6 9 4 0 3 5
0.454418377
2048 3 \frac{2048}{3} 3 2 0 4 8
[ 0 \bigl[0 [ 0 , − 1 -1 − 1 , 0 0 0 , 1 1 1 , 0 ] 0\bigr] 0 ]
y 2 = x 3 − x 2 + x {y}^2={x}^{3}-{x}^{2}+{x} y 2 = x 3 − x 2 + x
72.1-a3
72.1-a
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
72.1
2 3 ⋅ 3 2 2^{3} \cdot 3^{2} 2 3 ⋅ 3 2
2 4 ⋅ 3 4 2^{4} \cdot 3^{4} 2 4 ⋅ 3 4
0.52060 0.52060 0 . 5 2 0 6 0
( a + 1 ) , ( 3 ) (a+1), (3) ( a + 1 ) , ( 3 )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 2 2^{2} 2 2
1 1 1
7.270694035 7.270694035 7 . 2 7 0 6 9 4 0 3 5
0.454418377
35152 9 \frac{35152}{9} 9 3 5 1 5 2
[ i + 1 \bigl[i + 1 [ i + 1 , − i -i − i , i + 1 i + 1 i + 1 , − i + 1 -i + 1 − i + 1 , − i ] -i\bigr] − i ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 − i x 2 + ( − i + 1 ) x − i {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(-i+1\right){x}-i y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 − i x 2 + ( − i + 1 ) x − i
72.1-a4
72.1-a
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
72.1
2 3 ⋅ 3 2 2^{3} \cdot 3^{2} 2 3 ⋅ 3 2
2 8 ⋅ 3 8 2^{8} \cdot 3^{8} 2 8 ⋅ 3 8
0.52060 0.52060 0 . 5 2 0 6 0
( a + 1 ) , ( 3 ) (a+1), (3) ( a + 1 ) , ( 3 )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 3 2^{3} 2 3
1 1 1
3.635347017 3.635347017 3 . 6 3 5 3 4 7 0 1 7
0.454418377
1556068 81 \frac{1556068}{81} 8 1 1 5 5 6 0 6 8
[ i + 1 \bigl[i + 1 [ i + 1 , 0 0 0 , i + 1 i + 1 i + 1 , − i + 6 -i + 6 − i + 6 , − 5 i ] -5 i\bigr] − 5 i ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + ( − i + 6 ) x − 5 i {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i+6\right){x}-5i y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + ( − i + 6 ) x − 5 i
72.1-a5
72.1-a
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
72.1
2 3 ⋅ 3 2 2^{3} \cdot 3^{2} 2 3 ⋅ 3 2
2 8 ⋅ 3 2 2^{8} \cdot 3^{2} 2 8 ⋅ 3 2
0.52060 0.52060 0 . 5 2 0 6 0
( a + 1 ) , ( 3 ) (a+1), (3) ( a + 1 ) , ( 3 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 2 2
1 1 1
3.635347017 3.635347017 3 . 6 3 5 3 4 7 0 1 7
0.454418377
28756228 3 \frac{28756228}{3} 3 2 8 7 5 6 2 2 8
[ i + 1 \bigl[i + 1 [ i + 1 , − i -i − i , i + 1 i + 1 i + 1 , − i + 16 -i + 16 − i + 1 6 , − 28 i ] -28 i\bigr] − 2 8 i ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 − i x 2 + ( − i + 16 ) x − 28 i {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(-i+16\right){x}-28i y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 − i x 2 + ( − i + 1 6 ) x − 2 8 i
72.1-a6
72.1-a
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
72.1
2 3 ⋅ 3 2 2^{3} \cdot 3^{2} 2 3 ⋅ 3 2
2 10 ⋅ 3 4 2^{10} \cdot 3^{4} 2 1 0 ⋅ 3 4
0.52060 0.52060 0 . 5 2 0 6 0
( a + 1 ) , ( 3 ) (a+1), (3) ( a + 1 ) , ( 3 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
1 1 1
1.817673508 1.817673508 1 . 8 1 7 6 7 3 5 0 8
0.454418377
3065617154 9 \frac{3065617154}{9} 9 3 0 6 5 6 1 7 1 5 4
[ i + 1 \bigl[i + 1 [ i + 1 , 0 0 0 , i + 1 i + 1 i + 1 , − i + 96 -i + 96 − i + 9 6 , − 347 i ] -347 i\bigr] − 3 4 7 i ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + ( − i + 96 ) x − 347 i {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i+96\right){x}-347i y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + ( − i + 9 6 ) x − 3 4 7 i
98.1-a1
98.1-a
6 6 6
18 18 1 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
98.1
2 ⋅ 7 2 2 \cdot 7^{2} 2 ⋅ 7 2
2 36 ⋅ 7 2 2^{36} \cdot 7^{2} 2 3 6 ⋅ 7 2
0.56231 0.56231 0 . 5 6 2 3 1
( a + 1 ) , ( 7 ) (a+1), (7) ( a + 1 ) , ( 7 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 2
1 1 1
0.875417135 0.875417135 0 . 8 7 5 4 1 7 1 3 5
0.437708567
− 548347731625 1835008 -\frac{548347731625}{1835008} − 1 8 3 5 0 0 8 5 4 8 3 4 7 7 3 1 6 2 5
[ i \bigl[i [ i , 0 0 0 , i i i , − 170 -170 − 1 7 0 , 874 ] 874\bigr] 8 7 4 ]
y 2 + i x y + i y = x 3 − 170 x + 874 {y}^2+i{x}{y}+i{y}={x}^{3}-170{x}+874 y 2 + i x y + i y = x 3 − 1 7 0 x + 8 7 4
98.1-a2
98.1-a
6 6 6
18 18 1 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
98.1
2 ⋅ 7 2 2 \cdot 7^{2} 2 ⋅ 7 2
2 4 ⋅ 7 2 2^{4} \cdot 7^{2} 2 4 ⋅ 7 2
0.56231 0.56231 0 . 5 6 2 3 1
( a + 1 ) , ( 7 ) (a+1), (7) ( a + 1 ) , ( 7 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 2 2
1 1 1
7.878754216 7.878754216 7 . 8 7 8 7 5 4 2 1 6
0.437708567
− 15625 28 -\frac{15625}{28} − 2 8 1 5 6 2 5
[ i \bigl[i [ i , 0 0 0 , i i i , 0 0 0 , 0 ] 0\bigr] 0 ]
y 2 + i x y + i y = x 3 {y}^2+i{x}{y}+i{y}={x}^{3} y 2 + i x y + i y = x 3
98.1-a3
98.1-a
6 6 6
18 18 1 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
98.1
2 ⋅ 7 2 2 \cdot 7^{2} 2 ⋅ 7 2
2 12 ⋅ 7 6 2^{12} \cdot 7^{6} 2 1 2 ⋅ 7 6
0.56231 0.56231 0 . 5 6 2 3 1
( a + 1 ) , ( 7 ) (a+1), (7) ( a + 1 ) , ( 7 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3Cs.1.1
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
2.626251405 2.626251405 2 . 6 2 6 2 5 1 4 0 5
0.437708567
9938375 21952 \frac{9938375}{21952} 2 1 9 5 2 9 9 3 8 3 7 5
[ i \bigl[i [ i , 0 0 0 , i i i , 5 5 5 , 6 ] 6\bigr] 6 ]
y 2 + i x y + i y = x 3 + 5 x + 6 {y}^2+i{x}{y}+i{y}={x}^{3}+5{x}+6 y 2 + i x y + i y = x 3 + 5 x + 6
98.1-a4
98.1-a
6 6 6
18 18 1 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
98.1
2 ⋅ 7 2 2 \cdot 7^{2} 2 ⋅ 7 2
2 6 ⋅ 7 12 2^{6} \cdot 7^{12} 2 6 ⋅ 7 1 2
0.56231 0.56231 0 . 5 6 2 3 1
( a + 1 ) , ( 7 ) (a+1), (7) ( a + 1 ) , ( 7 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3Cs.1.1
1 1 1
2 2 ⋅ 3 2^{2} \cdot 3 2 2 ⋅ 3
1 1 1
1.313125702 1.313125702 1 . 3 1 3 1 2 5 7 0 2
0.437708567
4956477625 941192 \frac{4956477625}{941192} 9 4 1 1 9 2 4 9 5 6 4 7 7 6 2 5
[ i \bigl[i [ i , 0 0 0 , i i i , − 35 -35 − 3 5 , 70 ] 70\bigr] 7 0 ]
y 2 + i x y + i y = x 3 − 35 x + 70 {y}^2+i{x}{y}+i{y}={x}^{3}-35{x}+70 y 2 + i x y + i y = x 3 − 3 5 x + 7 0
98.1-a5
98.1-a
6 6 6
18 18 1 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
98.1
2 ⋅ 7 2 2 \cdot 7^{2} 2 ⋅ 7 2
2 2 ⋅ 7 4 2^{2} \cdot 7^{4} 2 2 ⋅ 7 4
0.56231 0.56231 0 . 5 6 2 3 1
( a + 1 ) , ( 7 ) (a+1), (7) ( a + 1 ) , ( 7 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 2 2^{2} 2 2
1 1 1
3.939377108 3.939377108 3 . 9 3 9 3 7 7 1 0 8
0.437708567
128787625 98 \frac{128787625}{98} 9 8 1 2 8 7 8 7 6 2 5
[ i \bigl[i [ i , 0 0 0 , i i i , − 10 -10 − 1 0 , − 12 ] -12\bigr] − 1 2 ]
y 2 + i x y + i y = x 3 − 10 x − 12 {y}^2+i{x}{y}+i{y}={x}^{3}-10{x}-12 y 2 + i x y + i y = x 3 − 1 0 x − 1 2
98.1-a6
98.1-a
6 6 6
18 18 1 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
98.1
2 ⋅ 7 2 2 \cdot 7^{2} 2 ⋅ 7 2
2 18 ⋅ 7 4 2^{18} \cdot 7^{4} 2 1 8 ⋅ 7 4
0.56231 0.56231 0 . 5 6 2 3 1
( a + 1 ) , ( 7 ) (a+1), (7) ( a + 1 ) , ( 7 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 2^{2} 2 2
1 1 1
0.437708567 0.437708567 0 . 4 3 7 7 0 8 5 6 7
0.437708567
2251439055699625 25088 \frac{2251439055699625}{25088} 2 5 0 8 8 2 2 5 1 4 3 9 0 5 5 6 9 9 6 2 5
[ i \bigl[i [ i , 0 0 0 , i i i , − 2730 -2730 − 2 7 3 0 , 55146 ] 55146\bigr] 5 5 1 4 6 ]
y 2 + i x y + i y = x 3 − 2730 x + 55146 {y}^2+i{x}{y}+i{y}={x}^{3}-2730{x}+55146 y 2 + i x y + i y = x 3 − 2 7 3 0 x + 5 5 1 4 6
100.2-a1
100.2-a
8 8 8
12 12 1 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
100.2
2 2 ⋅ 5 2 2^{2} \cdot 5^{2} 2 2 ⋅ 5 2
2 8 ⋅ 5 5 2^{8} \cdot 5^{5} 2 8 ⋅ 5 5
0.56516 0.56516 0 . 5 6 5 1 6
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
3.211547828 3.211547828 3 . 2 1 1 5 4 7 8 2 8
0.535257971
− 59648644 625 a − 119744792 625 -\frac{59648644}{625} a - \frac{119744792}{625} − 6 2 5 5 9 6 4 8 6 4 4 a − 6 2 5 1 1 9 7 4 4 7 9 2
[ i + 1 \bigl[i + 1 [ i + 1 , − i -i − i , i + 1 i + 1 i + 1 , 4 i − 11 4 i - 11 4 i − 1 1 , 11 i − 12 ] 11 i - 12\bigr] 1 1 i − 1 2 ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 − i x 2 + ( 4 i − 11 ) x + 11 i − 12 {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(4i-11\right){x}+11i-12 y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 − i x 2 + ( 4 i − 1 1 ) x + 1 1 i − 1 2
100.2-a2
100.2-a
8 8 8
12 12 1 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
100.2
2 2 ⋅ 5 2 2^{2} \cdot 5^{2} 2 2 ⋅ 5 2
2 8 ⋅ 5 5 2^{8} \cdot 5^{5} 2 8 ⋅ 5 5
0.56516 0.56516 0 . 5 6 5 1 6
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
3.211547828 3.211547828 3 . 2 1 1 5 4 7 8 2 8
0.535257971
59648644 625 a − 119744792 625 \frac{59648644}{625} a - \frac{119744792}{625} 6 2 5 5 9 6 4 8 6 4 4 a − 6 2 5 1 1 9 7 4 4 7 9 2
[ i + 1 \bigl[i + 1 [ i + 1 , 0 0 0 , i + 1 i + 1 i + 1 , − 6 i − 11 -6 i - 11 − 6 i − 1 1 , − 12 i − 12 ] -12 i - 12\bigr] − 1 2 i − 1 2 ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + ( − 6 i − 11 ) x − 12 i − 12 {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-6i-11\right){x}-12i-12 y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + ( − 6 i − 1 1 ) x − 1 2 i − 1 2
100.2-a3
100.2-a
8 8 8
12 12 1 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
100.2
2 2 ⋅ 5 2 2^{2} \cdot 5^{2} 2 2 ⋅ 5 2
2 8 ⋅ 5 15 2^{8} \cdot 5^{15} 2 8 ⋅ 5 1 5
0.56516 0.56516 0 . 5 6 5 1 6
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 2
1 1 1
1.070515942 1.070515942 1 . 0 7 0 5 1 5 9 4 2
0.535257971
− 893935595564 244140625 a − 1336401187352 244140625 -\frac{893935595564}{244140625} a - \frac{1336401187352}{244140625} − 2 4 4 1 4 0 6 2 5 8 9 3 9 3 5 5 9 5 5 6 4 a − 2 4 4 1 4 0 6 2 5 1 3 3 6 4 0 1 1 8 7 3 5 2
[ i + 1 \bigl[i + 1 [ i + 1 , − i -i − i , i + 1 i + 1 i + 1 , 54 i − 1 54 i - 1 5 4 i − 1 , − 119 i − 118 ] -119 i - 118\bigr] − 1 1 9 i − 1 1 8 ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 − i x 2 + ( 54 i − 1 ) x − 119 i − 118 {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(54i-1\right){x}-119i-118 y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 − i x 2 + ( 5 4 i − 1 ) x − 1 1 9 i − 1 1 8
100.2-a4
100.2-a
8 8 8
12 12 1 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
100.2
2 2 ⋅ 5 2 2^{2} \cdot 5^{2} 2 2 ⋅ 5 2
2 8 ⋅ 5 15 2^{8} \cdot 5^{15} 2 8 ⋅ 5 1 5
0.56516 0.56516 0 . 5 6 5 1 6
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 2
1 1 1
1.070515942 1.070515942 1 . 0 7 0 5 1 5 9 4 2
0.535257971
893935595564 244140625 a − 1336401187352 244140625 \frac{893935595564}{244140625} a - \frac{1336401187352}{244140625} 2 4 4 1 4 0 6 2 5 8 9 3 9 3 5 5 9 5 5 6 4 a − 2 4 4 1 4 0 6 2 5 1 3 3 6 4 0 1 1 8 7 3 5 2
[ i + 1 \bigl[i + 1 [ i + 1 , 0 0 0 , i + 1 i + 1 i + 1 , − 56 i − 1 -56 i - 1 − 5 6 i − 1 , 118 i − 118 ] 118 i - 118\bigr] 1 1 8 i − 1 1 8 ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + ( − 56 i − 1 ) x + 118 i − 118 {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-56i-1\right){x}+118i-118 y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + ( − 5 6 i − 1 ) x + 1 1 8 i − 1 1 8
100.2-a5
100.2-a
8 8 8
12 12 1 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
100.2
2 2 ⋅ 5 2 2^{2} \cdot 5^{2} 2 2 ⋅ 5 2
2 4 ⋅ 5 12 2^{4} \cdot 5^{12} 2 4 ⋅ 5 1 2
0.56516 0.56516 0 . 5 6 5 1 6
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2Cs , 3B.1.2
1 1 1
2 2 2^{2} 2 2
1 1 1
2.141031885 2.141031885 2 . 1 4 1 0 3 1 8 8 5
0.535257971
− 20720464 15625 -\frac{20720464}{15625} − 1 5 6 2 5 2 0 7 2 0 4 6 4
[ i + 1 \bigl[i + 1 [ i + 1 , 0 0 0 , i + 1 i + 1 i + 1 , − i + 9 -i + 9 − i + 9 , 17 i ] 17 i\bigr] 1 7 i ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + ( − i + 9 ) x + 17 i {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i+9\right){x}+17i y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + ( − i + 9 ) x + 1 7 i
100.2-a6
100.2-a
8 8 8
12 12 1 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
100.2
2 2 ⋅ 5 2 2^{2} \cdot 5^{2} 2 2 ⋅ 5 2
2 4 ⋅ 5 4 2^{4} \cdot 5^{4} 2 4 ⋅ 5 4
0.56516 0.56516 0 . 5 6 5 1 6
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z\oplus\Z/6\Z Z / 2 Z ⊕ Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2Cs , 3B.1.1
1 1 1
2 2 ⋅ 3 2^{2} \cdot 3 2 2 ⋅ 3
1 1 1
6.423095656 6.423095656 6 . 4 2 3 0 9 5 6 5 6
0.535257971
21296 25 \frac{21296}{25} 2 5 2 1 2 9 6
[ i + 1 \bigl[i + 1 [ i + 1 , 0 0 0 , i + 1 i + 1 i + 1 , − i − 1 -i - 1 − i − 1 , − i ] -i\bigr] − i ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + ( − i − 1 ) x − i {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}-i y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + ( − i − 1 ) x − i
100.2-a7
100.2-a
8 8 8
12 12 1 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
100.2
2 2 ⋅ 5 2 2^{2} \cdot 5^{2} 2 2 ⋅ 5 2
2 8 ⋅ 5 2 2^{8} \cdot 5^{2} 2 8 ⋅ 5 2
0.56516 0.56516 0 . 5 6 5 1 6
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
3 3 3
1 1 1
6.423095656 6.423095656 6 . 4 2 3 0 9 5 6 5 6
0.535257971
16384 5 \frac{16384}{5} 5 1 6 3 8 4
[ 0 \bigl[0 [ 0 , 1 1 1 , 0 0 0 , − 1 -1 − 1 , 0 ] 0\bigr] 0 ]
y 2 = x 3 + x 2 − x {y}^2={x}^{3}+{x}^{2}-{x} y 2 = x 3 + x 2 − x
100.2-a8
100.2-a
8 8 8
12 12 1 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
100.2
2 2 ⋅ 5 2 2^{2} \cdot 5^{2} 2 2 ⋅ 5 2
2 8 ⋅ 5 6 2^{8} \cdot 5^{6} 2 8 ⋅ 5 6
0.56516 0.56516 0 . 5 6 5 1 6
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
1 1 1
1 1 1
2.141031885 2.141031885 2 . 1 4 1 0 3 1 8 8 5
0.535257971
488095744 125 \frac{488095744}{125} 1 2 5 4 8 8 0 9 5 7 4 4
[ 0 \bigl[0 [ 0 , 1 1 1 , 0 0 0 , − 41 -41 − 4 1 , − 116 ] -116\bigr] − 1 1 6 ]
y 2 = x 3 + x 2 − 41 x − 116 {y}^2={x}^{3}+{x}^{2}-41{x}-116 y 2 = x 3 + x 2 − 4 1 x − 1 1 6
106.1-a1
106.1-a
3 3 3
9 9 9
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
106.1
2 ⋅ 53 2 \cdot 53 2 ⋅ 5 3
2 9 ⋅ 53 2^{9} \cdot 53 2 9 ⋅ 5 3
0.57345 0.57345 0 . 5 7 3 4 5
( a + 1 ) , ( − 2 a + 7 ) (a+1), (-2a+7) ( a + 1 ) , ( − 2 a + 7 )
0
Z / 9 Z \Z/9\Z Z / 9 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
3 3 3
3B.1.1
1 1 1
3 2 3^{2} 3 2
1 1 1
5.985343332 5.985343332 5 . 9 8 5 3 4 3 3 3 2
0.665038148
− 24565 1696 a + 44217 1696 -\frac{24565}{1696} a + \frac{44217}{1696} − 1 6 9 6 2 4 5 6 5 a + 1 6 9 6 4 4 2 1 7
[ 1 \bigl[1 [ 1 , i − 1 i - 1 i − 1 , i + 1 i + 1 i + 1 , − i − 1 -i - 1 − i − 1 , 0 ] 0\bigr] 0 ]
y 2 + x y + ( i + 1 ) y = x 3 + ( i − 1 ) x 2 + ( − i − 1 ) x {y}^2+{x}{y}+\left(i+1\right){y}={x}^{3}+\left(i-1\right){x}^{2}+\left(-i-1\right){x} y 2 + x y + ( i + 1 ) y = x 3 + ( i − 1 ) x 2 + ( − i − 1 ) x
106.1-a2
106.1-a
3 3 3
9 9 9
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
106.1
2 ⋅ 53 2 \cdot 53 2 ⋅ 5 3
2 ⋅ 5 3 9 2 \cdot 53^{9} 2 ⋅ 5 3 9
0.57345 0.57345 0 . 5 7 3 4 5
( a + 1 ) , ( − 2 a + 7 ) (a+1), (-2a+7) ( a + 1 ) , ( − 2 a + 7 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
3 3 3
3B.1.2
1 1 1
1 1 1
1 1 1
0.665038148 0.665038148 0 . 6 6 5 0 3 8 1 4 8
0.665038148
2664717683643388715 6599527183604266 a + 2995316993300077017 6599527183604266 \frac{2664717683643388715}{6599527183604266} a + \frac{2995316993300077017}{6599527183604266} 6 5 9 9 5 2 7 1 8 3 6 0 4 2 6 6 2 6 6 4 7 1 7 6 8 3 6 4 3 3 8 8 7 1 5 a + 6 5 9 9 5 2 7 1 8 3 6 0 4 2 6 6 2 9 9 5 3 1 6 9 9 3 3 0 0 0 7 7 0 1 7
[ 1 \bigl[1 [ 1 , i − 1 i - 1 i − 1 , i + 1 i + 1 i + 1 , − 76 i + 14 -76 i + 14 − 7 6 i + 1 4 , 225 i + 345 ] 225 i + 345\bigr] 2 2 5 i + 3 4 5 ]
y 2 + x y + ( i + 1 ) y = x 3 + ( i − 1 ) x 2 + ( − 76 i + 14 ) x + 225 i + 345 {y}^2+{x}{y}+\left(i+1\right){y}={x}^{3}+\left(i-1\right){x}^{2}+\left(-76i+14\right){x}+225i+345 y 2 + x y + ( i + 1 ) y = x 3 + ( i − 1 ) x 2 + ( − 7 6 i + 1 4 ) x + 2 2 5 i + 3 4 5
106.1-a3
106.1-a
3 3 3
9 9 9
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
106.1
2 ⋅ 53 2 \cdot 53 2 ⋅ 5 3
2 3 ⋅ 5 3 3 2^{3} \cdot 53^{3} 2 3 ⋅ 5 3 3
0.57345 0.57345 0 . 5 7 3 4 5
( a + 1 ) , ( − 2 a + 7 ) (a+1), (-2a+7) ( a + 1 ) , ( − 2 a + 7 )
0
Z / 3 Z \Z/3\Z Z / 3 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
3 3 3
3Cs.1.1
1 1 1
3 3 3
1 1 1
1.995114444 1.995114444 1 . 9 9 5 1 1 4 4 4 4
0.665038148
12075196954415 595508 a + 199712312811 595508 \frac{12075196954415}{595508} a + \frac{199712312811}{595508} 5 9 5 5 0 8 1 2 0 7 5 1 9 6 9 5 4 4 1 5 a + 5 9 5 5 0 8 1 9 9 7 1 2 3 1 2 8 1 1
[ 1 \bigl[1 [ 1 , i − 1 i - 1 i − 1 , i + 1 i + 1 i + 1 , − 51 i − 31 -51 i - 31 − 5 1 i − 3 1 , 174 i + 30 ] 174 i + 30\bigr] 1 7 4 i + 3 0 ]
y 2 + x y + ( i + 1 ) y = x 3 + ( i − 1 ) x 2 + ( − 51 i − 31 ) x + 174 i + 30 {y}^2+{x}{y}+\left(i+1\right){y}={x}^{3}+\left(i-1\right){x}^{2}+\left(-51i-31\right){x}+174i+30 y 2 + x y + ( i + 1 ) y = x 3 + ( i − 1 ) x 2 + ( − 5 1 i − 3 1 ) x + 1 7 4 i + 3 0
106.2-a1
106.2-a
3 3 3
9 9 9
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
106.2
2 ⋅ 53 2 \cdot 53 2 ⋅ 5 3
2 9 ⋅ 53 2^{9} \cdot 53 2 9 ⋅ 5 3
0.57345 0.57345 0 . 5 7 3 4 5
( a + 1 ) , ( 2 a + 7 ) (a+1), (2a+7) ( a + 1 ) , ( 2 a + 7 )
0
Z / 9 Z \Z/9\Z Z / 9 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
3 3 3
3B.1.1
1 1 1
3 2 3^{2} 3 2
1 1 1
5.985343332 5.985343332 5 . 9 8 5 3 4 3 3 3 2
0.665038148
24565 1696 a + 44217 1696 \frac{24565}{1696} a + \frac{44217}{1696} 1 6 9 6 2 4 5 6 5 a + 1 6 9 6 4 4 2 1 7
[ 1 \bigl[1 [ 1 , − i − 1 -i - 1 − i − 1 , i + 1 i + 1 i + 1 , − 1 -1 − 1 , − i ] -i\bigr] − i ]
y 2 + x y + ( i + 1 ) y = x 3 + ( − i − 1 ) x 2 − x − i {y}^2+{x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}-{x}-i y 2 + x y + ( i + 1 ) y = x 3 + ( − i − 1 ) x 2 − x − i
106.2-a2
106.2-a
3 3 3
9 9 9
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
106.2
2 ⋅ 53 2 \cdot 53 2 ⋅ 5 3
2 ⋅ 5 3 9 2 \cdot 53^{9} 2 ⋅ 5 3 9
0.57345 0.57345 0 . 5 7 3 4 5
( a + 1 ) , ( 2 a + 7 ) (a+1), (2a+7) ( a + 1 ) , ( 2 a + 7 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
3 3 3
3B.1.2
1 1 1
1 1 1
1 1 1
0.665038148 0.665038148 0 . 6 6 5 0 3 8 1 4 8
0.665038148
− 2664717683643388715 6599527183604266 a + 2995316993300077017 6599527183604266 -\frac{2664717683643388715}{6599527183604266} a + \frac{2995316993300077017}{6599527183604266} − 6 5 9 9 5 2 7 1 8 3 6 0 4 2 6 6 2 6 6 4 7 1 7 6 8 3 6 4 3 3 8 8 7 1 5 a + 6 5 9 9 5 2 7 1 8 3 6 0 4 2 6 6 2 9 9 5 3 1 6 9 9 3 3 0 0 0 7 7 0 1 7
[ 1 \bigl[1 [ 1 , − i − 1 -i - 1 − i − 1 , i + 1 i + 1 i + 1 , 75 i + 14 75 i + 14 7 5 i + 1 4 , − 226 i + 345 ] -226 i + 345\bigr] − 2 2 6 i + 3 4 5 ]
y 2 + x y + ( i + 1 ) y = x 3 + ( − i − 1 ) x 2 + ( 75 i + 14 ) x − 226 i + 345 {y}^2+{x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(75i+14\right){x}-226i+345 y 2 + x y + ( i + 1 ) y = x 3 + ( − i − 1 ) x 2 + ( 7 5 i + 1 4 ) x − 2 2 6 i + 3 4 5
106.2-a3
106.2-a
3 3 3
9 9 9
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
106.2
2 ⋅ 53 2 \cdot 53 2 ⋅ 5 3
2 3 ⋅ 5 3 3 2^{3} \cdot 53^{3} 2 3 ⋅ 5 3 3
0.57345 0.57345 0 . 5 7 3 4 5
( a + 1 ) , ( 2 a + 7 ) (a+1), (2a+7) ( a + 1 ) , ( 2 a + 7 )
0
Z / 3 Z \Z/3\Z Z / 3 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
3 3 3
3Cs.1.1
1 1 1
3 3 3
1 1 1
1.995114444 1.995114444 1 . 9 9 5 1 1 4 4 4 4
0.665038148
− 12075196954415 595508 a + 199712312811 595508 -\frac{12075196954415}{595508} a + \frac{199712312811}{595508} − 5 9 5 5 0 8 1 2 0 7 5 1 9 6 9 5 4 4 1 5 a + 5 9 5 5 0 8 1 9 9 7 1 2 3 1 2 8 1 1
[ 1 \bigl[1 [ 1 , − i − 1 -i - 1 − i − 1 , i + 1 i + 1 i + 1 , 50 i − 31 50 i - 31 5 0 i − 3 1 , − 175 i + 30 ] -175 i + 30\bigr] − 1 7 5 i + 3 0 ]
y 2 + x y + ( i + 1 ) y = x 3 + ( − i − 1 ) x 2 + ( 50 i − 31 ) x − 175 i + 30 {y}^2+{x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(50i-31\right){x}-175i+30 y 2 + x y + ( i + 1 ) y = x 3 + ( − i − 1 ) x 2 + ( 5 0 i − 3 1 ) x − 1 7 5 i + 3 0
121.1-a1
121.1-a
3 3 3
25 25 2 5
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
121.1
1 1 2 11^{2} 1 1 2
1 1 2 11^{2} 1 1 2
0.59274 0.59274 0 . 5 9 2 7 4
( 11 ) (11) ( 1 1 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
5 5 5
5B.1.2
1 1 1
1 1 1
1 1 1
0.370308724 0.370308724 0 . 3 7 0 3 0 8 7 2 4
0.370308724
− 52893159101157376 11 -\frac{52893159101157376}{11} − 1 1 5 2 8 9 3 1 5 9 1 0 1 1 5 7 3 7 6
[ 0 \bigl[0 [ 0 , 1 1 1 , i i i , − 7820 -7820 − 7 8 2 0 , 263580 ] 263580\bigr] 2 6 3 5 8 0 ]
y 2 + i y = x 3 + x 2 − 7820 x + 263580 {y}^2+i{y}={x}^{3}+{x}^{2}-7820{x}+263580 y 2 + i y = x 3 + x 2 − 7 8 2 0 x + 2 6 3 5 8 0
121.1-a2
121.1-a
3 3 3
25 25 2 5
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
121.1
1 1 2 11^{2} 1 1 2
1 1 10 11^{10} 1 1 1 0
0.59274 0.59274 0 . 5 9 2 7 4
( 11 ) (11) ( 1 1 )
0
Z / 5 Z \Z/5\Z Z / 5 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
5 5 5
5Cs.1.1
1 1 1
5 5 5
1 1 1
1.851543623 1.851543623 1 . 8 5 1 5 4 3 6 2 3
0.370308724
− 122023936 161051 -\frac{122023936}{161051} − 1 6 1 0 5 1 1 2 2 0 2 3 9 3 6
[ 0 \bigl[0 [ 0 , 1 1 1 , i i i , − 10 -10 − 1 0 , 20 ] 20\bigr] 2 0 ]
y 2 + i y = x 3 + x 2 − 10 x + 20 {y}^2+i{y}={x}^{3}+{x}^{2}-10{x}+20 y 2 + i y = x 3 + x 2 − 1 0 x + 2 0
121.1-a3
121.1-a
3 3 3
25 25 2 5
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
121.1
1 1 2 11^{2} 1 1 2
1 1 2 11^{2} 1 1 2
0.59274 0.59274 0 . 5 9 2 7 4
( 11 ) (11) ( 1 1 )
0
Z / 5 Z \Z/5\Z Z / 5 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
5 5 5
5B.1.1
1 1 1
1 1 1
1 1 1
9.257718117 9.257718117 9 . 2 5 7 7 1 8 1 1 7
0.370308724
− 4096 11 -\frac{4096}{11} − 1 1 4 0 9 6
[ 0 \bigl[0 [ 0 , 1 1 1 , i i i , 0 0 0 , 0 ] 0\bigr] 0 ]
y 2 + i y = x 3 + x 2 {y}^2+i{y}={x}^{3}+{x}^{2} y 2 + i y = x 3 + x 2
130.1-a1
130.1-a
6 6 6
18 18 1 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
130.1
2 ⋅ 5 ⋅ 13 2 \cdot 5 \cdot 13 2 ⋅ 5 ⋅ 1 3
2 18 ⋅ 5 9 ⋅ 13 2^{18} \cdot 5^{9} \cdot 13 2 1 8 ⋅ 5 9 ⋅ 1 3
0.60347 0.60347 0 . 6 0 3 4 7
( a + 1 ) , ( − a − 2 ) , ( − 3 a − 2 ) (a+1), (-a-2), (-3a-2) ( a + 1 ) , ( − a − 2 ) , ( − 3 a − 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 2
1 1 1
0.960726389 0.960726389 0 . 9 6 0 7 2 6 3 8 9
0.480363194
276861163011391 13000000000 a − 33515586556057 812500000 \frac{276861163011391}{13000000000} a - \frac{33515586556057}{812500000} 1 3 0 0 0 0 0 0 0 0 0 2 7 6 8 6 1 1 6 3 0 1 1 3 9 1 a − 8 1 2 5 0 0 0 0 0 3 3 5 1 5 5 8 6 5 5 6 0 5 7
[ i \bigl[i [ i , − i + 1 -i + 1 − i + 1 , i i i , 89 i − 50 89 i - 50 8 9 i − 5 0 , − 368 i + 14 ] -368 i + 14\bigr] − 3 6 8 i + 1 4 ]
y 2 + i x y + i y = x 3 + ( − i + 1 ) x 2 + ( 89 i − 50 ) x − 368 i + 14 {y}^2+i{x}{y}+i{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(89i-50\right){x}-368i+14 y 2 + i x y + i y = x 3 + ( − i + 1 ) x 2 + ( 8 9 i − 5 0 ) x − 3 6 8 i + 1 4
130.1-a2
130.1-a
6 6 6
18 18 1 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
130.1
2 ⋅ 5 ⋅ 13 2 \cdot 5 \cdot 13 2 ⋅ 5 ⋅ 1 3
2 6 ⋅ 5 3 ⋅ 1 3 3 2^{6} \cdot 5^{3} \cdot 13^{3} 2 6 ⋅ 5 3 ⋅ 1 3 3
0.60347 0.60347 0 . 6 0 3 4 7
( a + 1 ) , ( − a − 2 ) , ( − 3 a − 2 ) (a+1), (-a-2), (-3a-2) ( a + 1 ) , ( − a − 2 ) , ( − 3 a − 2 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3Cs.1.1
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
2.882179168 2.882179168 2 . 8 8 2 1 7 9 1 6 8
0.480363194
− 37525044319 2197000 a − 7169596274 274625 -\frac{37525044319}{2197000} a - \frac{7169596274}{274625} − 2 1 9 7 0 0 0 3 7 5 2 5 0 4 4 3 1 9 a − 2 7 4 6 2 5 7 1 6 9 5 9 6 2 7 4
[ i \bigl[i [ i , − i + 1 -i + 1 − i + 1 , i i i , 9 i + 5 9 i + 5 9 i + 5 , 2 i + 18 ] 2 i + 18\bigr] 2 i + 1 8 ]
y 2 + i x y + i y = x 3 + ( − i + 1 ) x 2 + ( 9 i + 5 ) x + 2 i + 18 {y}^2+i{x}{y}+i{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(9i+5\right){x}+2i+18 y 2 + i x y + i y = x 3 + ( − i + 1 ) x 2 + ( 9 i + 5 ) x + 2 i + 1 8
130.1-a3
130.1-a
6 6 6
18 18 1 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
130.1
2 ⋅ 5 ⋅ 13 2 \cdot 5 \cdot 13 2 ⋅ 5 ⋅ 1 3
2 3 ⋅ 5 6 ⋅ 1 3 6 2^{3} \cdot 5^{6} \cdot 13^{6} 2 3 ⋅ 5 6 ⋅ 1 3 6
0.60347 0.60347 0 . 6 0 3 4 7
( a + 1 ) , ( − a − 2 ) , ( − 3 a − 2 ) (a+1), (-a-2), (-3a-2) ( a + 1 ) , ( − a − 2 ) , ( − 3 a − 2 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3Cs.1.1
1 1 1
2 2 ⋅ 3 2^{2} \cdot 3 2 2 ⋅ 3
1 1 1
1.441089584 1.441089584 1 . 4 4 1 0 8 9 5 8 4
0.480363194
− 133816114442969 301675562500 a − 19082395919017 301675562500 -\frac{133816114442969}{301675562500} a - \frac{19082395919017}{301675562500} − 3 0 1 6 7 5 5 6 2 5 0 0 1 3 3 8 1 6 1 1 4 4 4 2 9 6 9 a − 3 0 1 6 7 5 5 6 2 5 0 0 1 9 0 8 2 3 9 5 9 1 9 0 1 7
[ i \bigl[i [ i , − i + 1 -i + 1 − i + 1 , i i i , − i + 15 -i + 15 − i + 1 5 , 30 i + 30 ] 30 i + 30\bigr] 3 0 i + 3 0 ]
y 2 + i x y + i y = x 3 + ( − i + 1 ) x 2 + ( − i + 15 ) x + 30 i + 30 {y}^2+i{x}{y}+i{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(-i+15\right){x}+30i+30 y 2 + i x y + i y = x 3 + ( − i + 1 ) x 2 + ( − i + 1 5 ) x + 3 0 i + 3 0
130.1-a4
130.1-a
6 6 6
18 18 1 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
130.1
2 ⋅ 5 ⋅ 13 2 \cdot 5 \cdot 13 2 ⋅ 5 ⋅ 1 3
2 9 ⋅ 5 18 ⋅ 1 3 2 2^{9} \cdot 5^{18} \cdot 13^{2} 2 9 ⋅ 5 1 8 ⋅ 1 3 2
0.60347 0.60347 0 . 6 0 3 4 7
( a + 1 ) , ( − a − 2 ) , ( − 3 a − 2 ) (a+1), (-a-2), (-3a-2) ( a + 1 ) , ( − a − 2 ) , ( − 3 a − 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 2^{2} 2 2
1 1 1
0.480363194 0.480363194 0 . 4 8 0 3 6 3 1 9 4
0.480363194
8418015312387897223 20629882812500000 a + 2783266907131437289 20629882812500000 \frac{8418015312387897223}{20629882812500000} a + \frac{2783266907131437289}{20629882812500000} 2 0 6 2 9 8 8 2 8 1 2 5 0 0 0 0 0 8 4 1 8 0 1 5 3 1 2 3 8 7 8 9 7 2 2 3 a + 2 0 6 2 9 8 8 2 8 1 2 5 0 0 0 0 0 2 7 8 3 2 6 6 9 0 7 1 3 1 4 3 7 2 8 9
[ i \bigl[i [ i , − i + 1 -i + 1 − i + 1 , i i i , 9 i − 130 9 i - 130 9 i − 1 3 0 , − 688 i − 882 ] -688 i - 882\bigr] − 6 8 8 i − 8 8 2 ]
y 2 + i x y + i y = x 3 + ( − i + 1 ) x 2 + ( 9 i − 130 ) x − 688 i − 882 {y}^2+i{x}{y}+i{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(9i-130\right){x}-688i-882 y 2 + i x y + i y = x 3 + ( − i + 1 ) x 2 + ( 9 i − 1 3 0 ) x − 6 8 8 i − 8 8 2
130.1-a5
130.1-a
6 6 6
18 18 1 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
130.1
2 ⋅ 5 ⋅ 13 2 \cdot 5 \cdot 13 2 ⋅ 5 ⋅ 1 3
2 2 ⋅ 5 ⋅ 13 2^{2} \cdot 5 \cdot 13 2 2 ⋅ 5 ⋅ 1 3
0.60347 0.60347 0 . 6 0 3 4 7
( a + 1 ) , ( − a − 2 ) , ( − 3 a − 2 ) (a+1), (-a-2), (-3a-2) ( a + 1 ) , ( − a − 2 ) , ( − 3 a − 2 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 2 2
1 1 1
8.646537506 8.646537506 8 . 6 4 6 5 3 7 5 0 6
0.480363194
− 31409 130 a + 101344 65 -\frac{31409}{130} a + \frac{101344}{65} − 1 3 0 3 1 4 0 9 a + 6 5 1 0 1 3 4 4
[ i \bigl[i [ i , − i + 1 -i + 1 − i + 1 , i i i , − i -i − i , 0 ] 0\bigr] 0 ]
y 2 + i x y + i y = x 3 + ( − i + 1 ) x 2 − i x {y}^2+i{x}{y}+i{y}={x}^{3}+\left(-i+1\right){x}^{2}-i{x} y 2 + i x y + i y = x 3 + ( − i + 1 ) x 2 − i x