3400.4-b2
3400.4-b
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
3400.4
2 3 ⋅ 5 2 ⋅ 17 2^{3} \cdot 5^{2} \cdot 17 2 3 ⋅ 5 2 ⋅ 1 7
2 4 ⋅ 5 8 ⋅ 1 7 2 2^{4} \cdot 5^{8} \cdot 17^{2} 2 4 ⋅ 5 8 ⋅ 1 7 2
1.36470 1.36470 1 . 3 6 4 7 0
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a − 4 ) (a+1), (-a-2), (2a+1), (a-4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a − 4 )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2Cs
1 1 1
2 6 2^{6} 2 6
1 1 1
1.789627193 1.789627193 1 . 7 8 9 6 2 7 1 9 3
1.789627193
− 18495673728 180625 a − 897072368 36125 -\frac{18495673728}{180625} a - \frac{897072368}{36125} − 1 8 0 6 2 5 1 8 4 9 5 6 7 3 7 2 8 a − 3 6 1 2 5 8 9 7 0 7 2 3 6 8
[ i + 1 \bigl[i + 1 [ i + 1 , 1 1 1 , i + 1 i + 1 i + 1 , − 34 i − 8 -34 i - 8 − 3 4 i − 8 , − 84 i + 34 ] -84 i + 34\bigr] − 8 4 i + 3 4 ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + x 2 + ( − 34 i − 8 ) x − 84 i + 34 {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+{x}^{2}+\left(-34i-8\right){x}-84i+34 y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + x 2 + ( − 3 4 i − 8 ) x − 8 4 i + 3 4
34000.4-a2
34000.4-a
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
34000.4
2 4 ⋅ 5 3 ⋅ 17 2^{4} \cdot 5^{3} \cdot 17 2 4 ⋅ 5 3 ⋅ 1 7
2 4 ⋅ 5 14 ⋅ 1 7 2 2^{4} \cdot 5^{14} \cdot 17^{2} 2 4 ⋅ 5 1 4 ⋅ 1 7 2
2.42682 2.42682 2 . 4 2 6 8 2
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a − 4 ) (a+1), (-a-2), (2a+1), (a-4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a − 4 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2Cs
1 1 1
2 4 2^{4} 2 4
1 1 1
0.800345611 0.800345611 0 . 8 0 0 3 4 5 6 1 1
0.800345611
− 18495673728 180625 a − 897072368 36125 -\frac{18495673728}{180625} a - \frac{897072368}{36125} − 1 8 0 6 2 5 1 8 4 9 5 6 7 3 7 2 8 a − 3 6 1 2 5 8 9 7 0 7 2 3 6 8
[ i + 1 \bigl[i + 1 [ i + 1 , i + 1 i + 1 i + 1 , 0 0 0 , 134 i − 109 134 i - 109 1 3 4 i − 1 0 9 , − 854 i + 98 ] -854 i + 98\bigr] − 8 5 4 i + 9 8 ]
y 2 + ( i + 1 ) x y = x 3 + ( i + 1 ) x 2 + ( 134 i − 109 ) x − 854 i + 98 {y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(134i-109\right){x}-854i+98 y 2 + ( i + 1 ) x y = x 3 + ( i + 1 ) x 2 + ( 1 3 4 i − 1 0 9 ) x − 8 5 4 i + 9 8
34000.6-b2
34000.6-b
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
34000.6
2 4 ⋅ 5 3 ⋅ 17 2^{4} \cdot 5^{3} \cdot 17 2 4 ⋅ 5 3 ⋅ 1 7
2 4 ⋅ 5 14 ⋅ 1 7 2 2^{4} \cdot 5^{14} \cdot 17^{2} 2 4 ⋅ 5 1 4 ⋅ 1 7 2
2.42682 2.42682 2 . 4 2 6 8 2
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a − 4 ) (a+1), (-a-2), (2a+1), (a-4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a − 4 )
1 1 1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2Cs
1 1 1
2 4 2^{4} 2 4
2.292065342 2.292065342 2 . 2 9 2 0 6 5 3 4 2
0.800345611 0.800345611 0 . 8 0 0 3 4 5 6 1 1
3.668888877
− 18495673728 180625 a − 897072368 36125 -\frac{18495673728}{180625} a - \frac{897072368}{36125} − 1 8 0 6 2 5 1 8 4 9 5 6 7 3 7 2 8 a − 3 6 1 2 5 8 9 7 0 7 2 3 6 8
[ i + 1 \bigl[i + 1 [ i + 1 , − i -i − i , 0 0 0 , 67 i + 158 67 i + 158 6 7 i + 1 5 8 , 693 i − 474 ] 693 i - 474\bigr] 6 9 3 i − 4 7 4 ]
y 2 + ( i + 1 ) x y = x 3 − i x 2 + ( 67 i + 158 ) x + 693 i − 474 {y}^2+\left(i+1\right){x}{y}={x}^{3}-i{x}^{2}+\left(67i+158\right){x}+693i-474 y 2 + ( i + 1 ) x y = x 3 − i x 2 + ( 6 7 i + 1 5 8 ) x + 6 9 3 i − 4 7 4
57800.6-b2
57800.6-b
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57800.6
2 3 ⋅ 5 2 ⋅ 1 7 2 2^{3} \cdot 5^{2} \cdot 17^{2} 2 3 ⋅ 5 2 ⋅ 1 7 2
2 4 ⋅ 5 8 ⋅ 1 7 8 2^{4} \cdot 5^{8} \cdot 17^{8} 2 4 ⋅ 5 8 ⋅ 1 7 8
2.77109 2.77109 2 . 7 7 1 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a − 4 ) (a+1), (-a-2), (2a+1), (a-4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a − 4 )
1 1 1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2Cs
1 1 1
2 6 2^{6} 2 6
1.151803464 1.151803464 1 . 1 5 1 8 0 3 4 6 4
0.434048349 0.434048349 0 . 4 3 4 0 4 8 3 4 9
3.999507146
− 18495673728 180625 a − 897072368 36125 -\frac{18495673728}{180625} a - \frac{897072368}{36125} − 1 8 0 6 2 5 1 8 4 9 5 6 7 3 7 2 8 a − 3 6 1 2 5 8 9 7 0 7 2 3 6 8
[ i + 1 \bigl[i + 1 [ i + 1 , i − 1 i - 1 i − 1 , 0 0 0 , 433 i + 390 433 i + 390 4 3 3 i + 3 9 0 , 1769 i − 5508 ] 1769 i - 5508\bigr] 1 7 6 9 i − 5 5 0 8 ]
y 2 + ( i + 1 ) x y = x 3 + ( i − 1 ) x 2 + ( 433 i + 390 ) x + 1769 i − 5508 {y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i-1\right){x}^{2}+\left(433i+390\right){x}+1769i-5508 y 2 + ( i + 1 ) x y = x 3 + ( i − 1 ) x 2 + ( 4 3 3 i + 3 9 0 ) x + 1 7 6 9 i − 5 5 0 8
85000.6-d2
85000.6-d
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
85000.6
2 3 ⋅ 5 4 ⋅ 17 2^{3} \cdot 5^{4} \cdot 17 2 3 ⋅ 5 4 ⋅ 1 7
2 4 ⋅ 5 20 ⋅ 1 7 2 2^{4} \cdot 5^{20} \cdot 17^{2} 2 4 ⋅ 5 2 0 ⋅ 1 7 2
3.05157 3.05157 3 . 0 5 1 5 7
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a − 4 ) (a+1), (-a-2), (2a+1), (a-4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a − 4 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2Cs
1 1 1
2 6 2^{6} 2 6
1 1 1
0.357925438 0.357925438 0 . 3 5 7 9 2 5 4 3 8
1.431701754
− 18495673728 180625 a − 897072368 36125 -\frac{18495673728}{180625} a - \frac{897072368}{36125} − 1 8 0 6 2 5 1 8 4 9 5 6 7 3 7 2 8 a − 3 6 1 2 5 8 9 7 0 7 2 3 6 8
[ i + 1 \bigl[i + 1 [ i + 1 , − i − 1 -i - 1 − i − 1 , 0 0 0 , − 833 i − 206 -833 i - 206 − 8 3 3 i − 2 0 6 , − 8571 i + 3828 ] -8571 i + 3828\bigr] − 8 5 7 1 i + 3 8 2 8 ]
y 2 + ( i + 1 ) x y = x 3 + ( − i − 1 ) x 2 + ( − 833 i − 206 ) x − 8571 i + 3828 {y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(-833i-206\right){x}-8571i+3828 y 2 + ( i + 1 ) x y = x 3 + ( − i − 1 ) x 2 + ( − 8 3 3 i − 2 0 6 ) x − 8 5 7 1 i + 3 8 2 8