Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
12800.2-c1 12800.2-c Q(1)\Q(\sqrt{-1}) 2952 2^{9} \cdot 5^{2} 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 0.3033573960.303357396 1.2697816191.269781619 3.081581164 324134216390625a1619282312390625 -\frac{324134216}{390625} a - \frac{1619282312}{390625} [0 \bigl[0 , i1 -i - 1 , 0 0 , 2i+35 -2 i + 35 , 83i+1] 83 i + 1\bigr] y2=x3+(i1)x2+(2i+35)x+83i+1{y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(-2i+35\right){x}+83i+1
12800.2-e1 12800.2-e Q(1)\Q(\sqrt{-1}) 2952 2^{9} \cdot 5^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.2134295841.213429584 1.2697816191.269781619 3.081581164 324134216390625a1619282312390625 -\frac{324134216}{390625} a - \frac{1619282312}{390625} [0 \bigl[0 , i+1 -i + 1 , 0 0 , 2i35 2 i - 35 , i+83] -i + 83\bigr] y2=x3+(i+1)x2+(2i35)xi+83{y}^2={x}^{3}+\left(-i+1\right){x}^{2}+\left(2i-35\right){x}-i+83
25600.2-b1 25600.2-b Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.8978711930.897871193 1.795742386 324134216390625a1619282312390625 -\frac{324134216}{390625} a - \frac{1619282312}{390625} [0 \bigl[0 , i -i , 0 0 , 70i+5 70 i + 5 , 159i+238] 159 i + 238\bigr] y2=x3ix2+(70i+5)x+159i+238{y}^2={x}^{3}-i{x}^{2}+\left(70i+5\right){x}+159i+238
25600.2-r1 25600.2-r Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 0.5592566880.559256688 0.8978711930.897871193 4.017123764 324134216390625a1619282312390625 -\frac{324134216}{390625} a - \frac{1619282312}{390625} [0 \bigl[0 , 1 -1 , 0 0 , 70i5 -70 i - 5 , 238i159] 238 i - 159\bigr] y2=x3x2+(70i5)x+238i159{y}^2={x}^{3}-{x}^{2}+\left(-70i-5\right){x}+238i-159
64000.2-b1 64000.2-b Q(1)\Q(\sqrt{-1}) 2953 2^{9} \cdot 5^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.5678636030.567863603 1.135727206 324134216390625a1619282312390625 -\frac{324134216}{390625} a - \frac{1619282312}{390625} [0 \bigl[0 , i -i , 0 0 , 132i116 -132 i - 116 , 1044i+292] 1044 i + 292\bigr] y2=x3ix2+(132i116)x+1044i+292{y}^2={x}^{3}-i{x}^{2}+\left(-132i-116\right){x}+1044i+292
64000.2-k1 64000.2-k Q(1)\Q(\sqrt{-1}) 2953 2^{9} \cdot 5^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.5678636030.567863603 2.271454413 324134216390625a1619282312390625 -\frac{324134216}{390625} a - \frac{1619282312}{390625} [0 \bigl[0 , 1 -1 , 0 0 , 132i+116 132 i + 116 , 292i1044] 292 i - 1044\bigr] y2=x3x2+(132i+116)x+292i1044{y}^2={x}^{3}-{x}^{2}+\left(132i+116\right){x}+292i-1044
64000.3-c1 64000.3-c Q(1)\Q(\sqrt{-1}) 2953 2^{9} \cdot 5^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.5678636030.567863603 1.135727206 324134216390625a1619282312390625 -\frac{324134216}{390625} a - \frac{1619282312}{390625} [0 \bigl[0 , i -i , 0 0 , 148i+94 -148 i + 94 , 8i+1010] 8 i + 1010\bigr] y2=x3ix2+(148i+94)x+8i+1010{y}^2={x}^{3}-i{x}^{2}+\left(-148i+94\right){x}+8i+1010
64000.3-l1 64000.3-l Q(1)\Q(\sqrt{-1}) 2953 2^{9} \cdot 5^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.5678636030.567863603 2.271454413 324134216390625a1619282312390625 -\frac{324134216}{390625} a - \frac{1619282312}{390625} [0 \bigl[0 , 1 -1 , 0 0 , 148i94 148 i - 94 , 1010i8] 1010 i - 8\bigr] y2=x3x2+(148i94)x+1010i8{y}^2={x}^{3}-{x}^{2}+\left(148i-94\right){x}+1010i-8
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.