Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
12800.2-c1 12800.2-c \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.303357396$ $1.269781619$ 3.081581164 \( -\frac{324134216}{390625} a - \frac{1619282312}{390625} \) \( \bigl[0\) , \( -i - 1\) , \( 0\) , \( -2 i + 35\) , \( 83 i + 1\bigr] \) ${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(-2i+35\right){x}+83i+1$
12800.2-e1 12800.2-e \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.213429584$ $1.269781619$ 3.081581164 \( -\frac{324134216}{390625} a - \frac{1619282312}{390625} \) \( \bigl[0\) , \( -i + 1\) , \( 0\) , \( 2 i - 35\) , \( -i + 83\bigr] \) ${y}^2={x}^{3}+\left(-i+1\right){x}^{2}+\left(2i-35\right){x}-i+83$
25600.2-b1 25600.2-b \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.897871193$ 1.795742386 \( -\frac{324134216}{390625} a - \frac{1619282312}{390625} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 70 i + 5\) , \( 159 i + 238\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(70i+5\right){x}+159i+238$
25600.2-r1 25600.2-r \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.559256688$ $0.897871193$ 4.017123764 \( -\frac{324134216}{390625} a - \frac{1619282312}{390625} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -70 i - 5\) , \( 238 i - 159\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-70i-5\right){x}+238i-159$
64000.2-b1 64000.2-b \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.567863603$ 1.135727206 \( -\frac{324134216}{390625} a - \frac{1619282312}{390625} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( -132 i - 116\) , \( 1044 i + 292\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(-132i-116\right){x}+1044i+292$
64000.2-k1 64000.2-k \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.567863603$ 2.271454413 \( -\frac{324134216}{390625} a - \frac{1619282312}{390625} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 132 i + 116\) , \( 292 i - 1044\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(132i+116\right){x}+292i-1044$
64000.3-c1 64000.3-c \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.567863603$ 1.135727206 \( -\frac{324134216}{390625} a - \frac{1619282312}{390625} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( -148 i + 94\) , \( 8 i + 1010\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(-148i+94\right){x}+8i+1010$
64000.3-l1 64000.3-l \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.567863603$ 2.271454413 \( -\frac{324134216}{390625} a - \frac{1619282312}{390625} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 148 i - 94\) , \( 1010 i - 8\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(148i-94\right){x}+1010i-8$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.