Learn more

Refine search


Results (14 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
200.2-a6 200.2-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $5.993777963$ 0.749222245 \( \frac{148176}{25} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -i + 1\) , \( i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+1\right){x}+i$
2000.2-a6 2000.2-a \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.680498993$ 1.340249496 \( \frac{148176}{25} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( -7 i - 6\) , \( -11 i + 2\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-7i-6\right){x}-11i+2$
2000.3-a6 2000.3-a \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.680498993$ 1.340249496 \( \frac{148176}{25} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 7 i - 6\) , \( -11 i - 2\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(7i-6\right){x}-11i-2$
5000.3-a6 5000.3-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{4} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.466696751$ $1.198755592$ 2.237821363 \( \frac{148176}{25} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -i + 43\) , \( 115 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+43\right){x}+115i$
6400.2-a6 6400.2-a \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.361102669$ $2.996888981$ 2.164369220 \( \frac{148176}{25} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 7\) , \( -6 i\bigr] \) ${y}^2={x}^{3}+7{x}-6i$
16200.2-a6 16200.2-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.341880646$ $1.997925987$ 2.732208912 \( \frac{148176}{25} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 15\) , \( 28 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+15{x}+28i$
25600.2-j6 25600.2-j \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.119120521$ 2.119120521 \( \frac{148176}{25} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 14 i\) , \( 12 i + 12\bigr] \) ${y}^2={x}^{3}+14i{x}+12i+12$
25600.2-p6 25600.2-p \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.119120521$ 2.119120521 \( \frac{148176}{25} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -14 i\) , \( -12 i + 12\bigr] \) ${y}^2={x}^{3}-14i{x}-12i+12$
32000.2-l6 32000.2-l \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 5^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.340249496$ 2.680498993 \( \frac{148176}{25} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -28 i - 21\) , \( 66 i + 12\bigr] \) ${y}^2={x}^{3}+\left(-28i-21\right){x}+66i+12$
32000.3-l6 32000.3-l \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 5^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.340249496$ 2.680498993 \( \frac{148176}{25} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 28 i - 21\) , \( -66 i + 12\bigr] \) ${y}^2={x}^{3}+\left(28i-21\right){x}-66i+12$
57800.4-e6 57800.4-e \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \cdot 17^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.453704684$ 2.907409369 \( \frac{148176}{25} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( -14 i - 27\) , \( 22 i + 46\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-14i-27\right){x}+22i+46$
57800.6-d6 57800.6-d \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \cdot 17^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.453704684$ 2.907409369 \( \frac{148176}{25} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 14 i - 27\) , \( 22 i - 46\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(14i-27\right){x}+22i-46$
67600.4-d6 67600.4-d \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.129245912$ $1.662374906$ 3.754460134 \( \frac{148176}{25} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( -21 i + 8\) , \( 11 i - 24\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-21i+8\right){x}+11i-24$
67600.6-f6 67600.6-f \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.129245912$ $1.662374906$ 3.754460134 \( \frac{148176}{25} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( 20 i + 8\) , \( -3 i - 45\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(20i+8\right){x}-3i-45$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.