Learn more

Refine search


Results (18 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
100.2-a6 100.2-a \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $6.423095656$ 0.535257971 \( \frac{21296}{25} \) \( \bigl[i + 1\) , \( 0\) , \( i + 1\) , \( -i - 1\) , \( -i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}-i$
2000.2-b6 2000.2-b \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.872495702$ 1.436247851 \( \frac{21296}{25} \) \( \bigl[i + 1\) , \( 1\) , \( i + 1\) , \( 3 i + 3\) , \( 5 i + 1\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+{x}^{2}+\left(3i+3\right){x}+5i+1$
2000.3-b6 2000.3-b \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.872495702$ 1.436247851 \( \frac{21296}{25} \) \( \bigl[i + 1\) , \( -1\) , \( i + 1\) , \( -5 i + 3\) , \( 5 i - 1\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-{x}^{2}+\left(-5i+3\right){x}+5i-1$
2500.3-a6 2500.3-a \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 5^{4} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.284619131$ 1.284619131 \( \frac{21296}{25} \) \( \bigl[i + 1\) , \( 0\) , \( 0\) , \( -23\) , \( 39 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}-23{x}+39i$
6400.2-e6 6400.2-e \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.413436914$ $3.211547828$ 2.655544846 \( \frac{21296}{25} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( -4\) , \( 4 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}-4{x}+4i$
8100.2-c6 8100.2-c \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{4} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.141031885$ 2.141031885 \( \frac{21296}{25} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( -9\) , \( 5 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}-9{x}+5i$
25600.2-i6 25600.2-i \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.270907247$ 2.270907247 \( \frac{21296}{25} \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( 8 i\) , \( 8 i - 8\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}+8i{x}+8i-8$
25600.2-n6 25600.2-n \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.270907247$ 2.270907247 \( \frac{21296}{25} \) \( \bigl[0\) , \( -i + 1\) , \( 0\) , \( -8 i\) , \( -8 i - 8\bigr] \) ${y}^2={x}^{3}+\left(-i+1\right){x}^{2}-8i{x}-8i-8$
28900.4-c6 28900.4-c \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 5^{2} \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.179442562$ $1.557829519$ 3.674740881 \( \frac{21296}{25} \) \( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( 7 i + 14\) , \( -16 i - 12\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(7i+14\right){x}-16i-12$
28900.6-c6 28900.6-c \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 5^{2} \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.179442562$ $1.557829519$ 3.674740881 \( \frac{21296}{25} \) \( \bigl[i + 1\) , \( 1\) , \( 0\) , \( -7 i + 14\) , \( 16 i - 12\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-7i+14\right){x}+16i-12$
32000.2-e6 32000.2-e \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 5^{3} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.641865234$ $1.436247851$ 3.687510258 \( \frac{21296}{25} \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( 14 i + 11\) , \( 29 i - 3\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(14i+11\right){x}+29i-3$
32000.3-d6 32000.3-d \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 5^{3} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.641865234$ $1.436247851$ 3.687510258 \( \frac{21296}{25} \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( -14 i + 11\) , \( 29 i + 3\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}+\left(-14i+11\right){x}+29i+3$
67600.4-f6 67600.4-f \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.781446210$ 1.781446210 \( \frac{21296}{25} \) \( \bigl[i + 1\) , \( i - 1\) , \( 0\) , \( 10 i - 5\) , \( -9 i + 12\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i-1\right){x}^{2}+\left(10i-5\right){x}-9i+12$
67600.6-d6 67600.6-d \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.781446210$ 1.781446210 \( \frac{21296}{25} \) \( \bigl[i + 1\) , \( i - 1\) , \( i + 1\) , \( -13 i - 5\) , \( 4 i + 23\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i-1\right){x}^{2}+\left(-13i-5\right){x}+4i+23$
84500.4-f6 84500.4-f \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 5^{3} \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.539016719$ $0.796686965$ 5.153131129 \( \frac{21296}{25} \) \( \bigl[i + 1\) , \( -1\) , \( 0\) , \( -15 i + 58\) , \( 80 i - 184\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}-{x}^{2}+\left(-15i+58\right){x}+80i-184$
84500.6-c6 84500.6-c \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 5^{3} \cdot 13^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.796686965$ 1.593373930 \( \frac{21296}{25} \) \( \bigl[i + 1\) , \( -1\) , \( i + 1\) , \( 50 i - 30\) , \( -25 i - 178\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-{x}^{2}+\left(50i-30\right){x}-25i-178$
84500.7-b6 84500.7-b \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 5^{3} \cdot 13^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.796686965$ 1.593373930 \( \frac{21296}{25} \) \( \bigl[i + 1\) , \( -i - 1\) , \( i + 1\) , \( -52 i - 30\) , \( 24 i - 178\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(-52i-30\right){x}+24i-178$
84500.9-e6 84500.9-e \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 5^{3} \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.539016719$ $0.796686965$ 5.153131129 \( \frac{21296}{25} \) \( \bigl[i + 1\) , \( -i - 1\) , \( 0\) , \( 15 i + 58\) , \( -80 i - 184\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(15i+58\right){x}-80i-184$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.