Learn more

Refine search


Results (6 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
450.2-a7 450.2-a Q(1)\Q(\sqrt{-1}) 23252 2 \cdot 3^{2} \cdot 5^{2} 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 0.9707176050.970717605 0.647145070 265616619904933750 \frac{2656166199049}{33750} [1 \bigl[1 , 0 0 , 1 1 , 289 -289 , 1862] 1862\bigr] y2+xy+y=x3289x+1862{y}^2+{x}{y}+{y}={x}^{3}-289{x}+1862
4050.2-c7 4050.2-c Q(1)\Q(\sqrt{-1}) 23452 2 \cdot 3^{4} \cdot 5^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 0.3235725350.323572535 2.588580280 265616619904933750 \frac{2656166199049}{33750} [1 \bigl[1 , 1 -1 , 1 1 , 2597 -2597 , 50281] -50281\bigr] y2+xy+y=x3x22597x50281{y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-2597{x}-50281
11250.3-g7 11250.3-g Q(1)\Q(\sqrt{-1}) 23254 2 \cdot 3^{2} \cdot 5^{4} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.4481176830.448117683 0.1941435210.194143521 4.175958957 265616619904933750 \frac{2656166199049}{33750} [i \bigl[i , 1 -1 , i i , 7212 -7212 , 232781] -232781\bigr] y2+ixy+iy=x3x27212x232781{y}^2+i{x}{y}+i{y}={x}^{3}-{x}^{2}-7212{x}-232781
18000.2-f7 18000.2-f Q(1)\Q(\sqrt{-1}) 243253 2^{4} \cdot 3^{2} \cdot 5^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.2170590550.217059055 1.736472441 265616619904933750 \frac{2656166199049}{33750} [i+1 \bigl[i + 1 , 1 1 , 0 0 , 4616i3462 -4616 i - 3462 , 163878i+29796] 163878 i + 29796\bigr] y2+(i+1)xy=x3+x2+(4616i3462)x+163878i+29796{y}^2+\left(i+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-4616i-3462\right){x}+163878i+29796
18000.3-g7 18000.3-g Q(1)\Q(\sqrt{-1}) 243253 2^{4} \cdot 3^{2} \cdot 5^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.2170590550.217059055 1.736472441 265616619904933750 \frac{2656166199049}{33750} [i+1 \bigl[i + 1 , i+1 -i + 1 , 0 0 , 4616i3462 4616 i - 3462 , 163878i+29796] -163878 i + 29796\bigr] y2+(i+1)xy=x3+(i+1)x2+(4616i3462)x163878i+29796{y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(4616i-3462\right){x}-163878i+29796
57600.2-ba7 57600.2-ba Q(1)\Q(\sqrt{-1}) 283252 2^{8} \cdot 3^{2} \cdot 5^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 0.2426794010.242679401 2.912152815 265616619904933750 \frac{2656166199049}{33750} [0 \bigl[0 , i i , 0 0 , 4616 4616 , 119184i] -119184 i\bigr] y2=x3+ix2+4616x119184i{y}^2={x}^{3}+i{x}^{2}+4616{x}-119184i
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.