2600.4-a2
2600.4-a
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
2600.4
2 3 ⋅ 5 2 ⋅ 13 2^{3} \cdot 5^{2} \cdot 13 2 3 ⋅ 5 2 ⋅ 1 3
2 8 ⋅ 5 9 ⋅ 13 2^{8} \cdot 5^{9} \cdot 13 2 8 ⋅ 5 9 ⋅ 1 3
1.27618 1.27618 1 . 2 7 6 1 8
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( 2 a + 3 ) (a+1), (-a-2), (2a+1), (2a+3) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( 2 a + 3 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 4 2^{4} 2 4
1 1 1
1.598837415 1.598837415 1 . 5 9 8 8 3 7 4 1 5
1.598837415
329359844912 5078125 a − 470870678516 5078125 \frac{329359844912}{5078125} a - \frac{470870678516}{5078125} 5 0 7 8 1 2 5 3 2 9 3 5 9 8 4 4 9 1 2 a − 5 0 7 8 1 2 5 4 7 0 8 7 0 6 7 8 5 1 6
[ i + 1 \bigl[i + 1 [ i + 1 , − i − 1 -i - 1 − i − 1 , i + 1 i + 1 i + 1 , − 24 i + 37 -24 i + 37 − 2 4 i + 3 7 , 75 i + 67 ] 75 i + 67\bigr] 7 5 i + 6 7 ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + ( − i − 1 ) x 2 + ( − 24 i + 37 ) x + 75 i + 67 {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(-24i+37\right){x}+75i+67 y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + ( − i − 1 ) x 2 + ( − 2 4 i + 3 7 ) x + 7 5 i + 6 7
26000.4-d2
26000.4-d
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26000.4
2 4 ⋅ 5 3 ⋅ 13 2^{4} \cdot 5^{3} \cdot 13 2 4 ⋅ 5 3 ⋅ 1 3
2 8 ⋅ 5 15 ⋅ 13 2^{8} \cdot 5^{15} \cdot 13 2 8 ⋅ 5 1 5 ⋅ 1 3
2.26940 2.26940 2 . 2 6 9 4 0
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( 2 a + 3 ) (a+1), (-a-2), (2a+1), (2a+3) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( 2 a + 3 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 4 2^{4} 2 4
0.568858194 0.568858194 0 . 5 6 8 8 5 8 1 9 4
0.715021829 0.715021829 0 . 7 1 5 0 2 1 8 2 9
3.253968216
329359844912 5078125 a − 470870678516 5078125 \frac{329359844912}{5078125} a - \frac{470870678516}{5078125} 5 0 7 8 1 2 5 3 2 9 3 5 9 8 4 4 9 1 2 a − 5 0 7 8 1 2 5 4 7 0 8 7 0 6 7 8 5 1 6
[ i + 1 \bigl[i + 1 [ i + 1 , i − 1 i - 1 i − 1 , i + 1 i + 1 i + 1 , − 79 i − 204 -79 i - 204 − 7 9 i − 2 0 4 , 570 i + 1169 ] 570 i + 1169\bigr] 5 7 0 i + 1 1 6 9 ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + ( i − 1 ) x 2 + ( − 79 i − 204 ) x + 570 i + 1169 {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i-1\right){x}^{2}+\left(-79i-204\right){x}+570i+1169 y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + ( i − 1 ) x 2 + ( − 7 9 i − 2 0 4 ) x + 5 7 0 i + 1 1 6 9
26000.6-a2
26000.6-a
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26000.6
2 4 ⋅ 5 3 ⋅ 13 2^{4} \cdot 5^{3} \cdot 13 2 4 ⋅ 5 3 ⋅ 1 3
2 8 ⋅ 5 15 ⋅ 13 2^{8} \cdot 5^{15} \cdot 13 2 8 ⋅ 5 1 5 ⋅ 1 3
2.26940 2.26940 2 . 2 6 9 4 0
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( 2 a + 3 ) (a+1), (-a-2), (2a+1), (2a+3) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( 2 a + 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
1 1 1
0.715021829 0.715021829 0 . 7 1 5 0 2 1 8 2 9
1.430043658
329359844912 5078125 a − 470870678516 5078125 \frac{329359844912}{5078125} a - \frac{470870678516}{5078125} 5 0 7 8 1 2 5 3 2 9 3 5 9 8 4 4 9 1 2 a − 5 0 7 8 1 2 5 4 7 0 8 7 0 6 7 8 5 1 6
[ i + 1 \bigl[i + 1 [ i + 1 , 0 0 0 , 0 0 0 , 217 i − 17 217 i - 17 2 1 7 i − 1 7 , − 982 i − 803 ] -982 i - 803\bigr] − 9 8 2 i − 8 0 3 ]
y 2 + ( i + 1 ) x y = x 3 + ( 217 i − 17 ) x − 982 i − 803 {y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(217i-17\right){x}-982i-803 y 2 + ( i + 1 ) x y = x 3 + ( 2 1 7 i − 1 7 ) x − 9 8 2 i − 8 0 3
65000.6-f2
65000.6-f
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
65000.6
2 3 ⋅ 5 4 ⋅ 13 2^{3} \cdot 5^{4} \cdot 13 2 3 ⋅ 5 4 ⋅ 1 3
2 8 ⋅ 5 21 ⋅ 13 2^{8} \cdot 5^{21} \cdot 13 2 8 ⋅ 5 2 1 ⋅ 1 3
2.85362 2.85362 2 . 8 5 3 6 2
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( 2 a + 3 ) (a+1), (-a-2), (2a+1), (2a+3) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( 2 a + 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 5 2^{5} 2 5
1 1 1
0.319767483 0.319767483 0 . 3 1 9 7 6 7 4 8 3
2.558139865
329359844912 5078125 a − 470870678516 5078125 \frac{329359844912}{5078125} a - \frac{470870678516}{5078125} 5 0 7 8 1 2 5 3 2 9 3 5 9 8 4 4 9 1 2 a − 5 0 7 8 1 2 5 4 7 0 8 7 0 6 7 8 5 1 6
[ i + 1 \bigl[i + 1 [ i + 1 , 1 1 1 , 0 0 0 , − 583 i + 919 -583 i + 919 − 5 8 3 i + 9 1 9 , 9196 i + 10797 ] 9196 i + 10797\bigr] 9 1 9 6 i + 1 0 7 9 7 ]
y 2 + ( i + 1 ) x y = x 3 + x 2 + ( − 583 i + 919 ) x + 9196 i + 10797 {y}^2+\left(i+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-583i+919\right){x}+9196i+10797 y 2 + ( i + 1 ) x y = x 3 + x 2 + ( − 5 8 3 i + 9 1 9 ) x + 9 1 9 6 i + 1 0 7 9 7
67600.6-g2
67600.6-g
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
67600.6
2 4 ⋅ 5 2 ⋅ 1 3 2 2^{4} \cdot 5^{2} \cdot 13^{2} 2 4 ⋅ 5 2 ⋅ 1 3 2
2 8 ⋅ 5 9 ⋅ 1 3 7 2^{8} \cdot 5^{9} \cdot 13^{7} 2 8 ⋅ 5 9 ⋅ 1 3 7
2.88174 2.88174 2 . 8 8 1 7 4
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( 2 a + 3 ) (a+1), (-a-2), (2a+1), (2a+3) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( 2 a + 3 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 4 2^{4} 2 4
1.371256731 1.371256731 1 . 3 7 1 2 5 6 7 3 1
0.443437714 0.443437714 0 . 4 4 3 4 3 7 7 1 4
4.864535603
329359844912 5078125 a − 470870678516 5078125 \frac{329359844912}{5078125} a - \frac{470870678516}{5078125} 5 0 7 8 1 2 5 3 2 9 3 5 9 8 4 4 9 1 2 a − 5 0 7 8 1 2 5 4 7 0 8 7 0 6 7 8 5 1 6
[ i + 1 \bigl[i + 1 [ i + 1 , − 1 -1 − 1 , i + 1 i + 1 i + 1 , 323 i + 464 323 i + 464 3 2 3 i + 4 6 4 , − 3191 i + 3939 ] -3191 i + 3939\bigr] − 3 1 9 1 i + 3 9 3 9 ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 − x 2 + ( 323 i + 464 ) x − 3191 i + 3939 {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-{x}^{2}+\left(323i+464\right){x}-3191i+3939 y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 − x 2 + ( 3 2 3 i + 4 6 4 ) x − 3 1 9 1 i + 3 9 3 9
83200.4-d2
83200.4-d
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
83200.4
2 8 ⋅ 5 2 ⋅ 13 2^{8} \cdot 5^{2} \cdot 13 2 8 ⋅ 5 2 ⋅ 1 3
2 20 ⋅ 5 9 ⋅ 13 2^{20} \cdot 5^{9} \cdot 13 2 2 0 ⋅ 5 9 ⋅ 1 3
3.03528 3.03528 3 . 0 3 5 2 8
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( 2 a + 3 ) (a+1), (-a-2), (2a+1), (2a+3) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( 2 a + 3 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
1.257124254 1.257124254 1 . 2 5 7 1 2 4 2 5 4
0.799418707 0.799418707 0 . 7 9 9 4 1 8 7 0 7
4.019874589
329359844912 5078125 a − 470870678516 5078125 \frac{329359844912}{5078125} a - \frac{470870678516}{5078125} 5 0 7 8 1 2 5 3 2 9 3 5 9 8 4 4 9 1 2 a − 5 0 7 8 1 2 5 4 7 0 8 7 0 6 7 8 5 1 6
[ 0 \bigl[0 [ 0 , i − 1 i - 1 i − 1 , 0 0 0 , − 94 i + 147 -94 i + 147 − 9 4 i + 1 4 7 , − 511 i − 683 ] -511 i - 683\bigr] − 5 1 1 i − 6 8 3 ]
y 2 = x 3 + ( i − 1 ) x 2 + ( − 94 i + 147 ) x − 511 i − 683 {y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(-94i+147\right){x}-511i-683 y 2 = x 3 + ( i − 1 ) x 2 + ( − 9 4 i + 1 4 7 ) x − 5 1 1 i − 6 8 3