Learn more

Refine search


Results (14 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
288.2-b3 288.2-b \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $3.353492831$ 1.185638761 \( -\frac{8000}{81} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 1\) , \( 3 a\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+{x}+3a$
288.2-c3 288.2-c \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $3.353492831$ 1.185638761 \( -\frac{8000}{81} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 1\) , \( -3 a\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+{x}-3a$
2592.3-b3 2592.3-b \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{4} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.117830943$ 1.580851681 \( -\frac{8000}{81} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 15\) , \( -68 a\bigr] \) ${y}^2={x}^{3}+15{x}-68a$
2592.3-f3 2592.3-f \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{4} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.117830943$ 1.580851681 \( -\frac{8000}{81} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 15\) , \( 68 a\bigr] \) ${y}^2={x}^{3}+15{x}+68a$
6912.2-e3 6912.2-e \(\Q(\sqrt{-2}) \) \( 2^{8} \cdot 3^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.936139989$ 1.369057715 \( -\frac{8000}{81} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 4 a - 2\) , \( -12 a - 8\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(4a-2\right){x}-12a-8$
6912.2-j3 6912.2-j \(\Q(\sqrt{-2}) \) \( 2^{8} \cdot 3^{3} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.788156716$ $1.936139989$ 4.316128133 \( -\frac{8000}{81} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 4 a - 2\) , \( 12 a + 8\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(4a-2\right){x}+12a+8$
6912.3-b3 6912.3-b \(\Q(\sqrt{-2}) \) \( 2^{8} \cdot 3^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.936139989$ 1.369057715 \( -\frac{8000}{81} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -4 a - 2\) , \( 12 a - 8\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-4a-2\right){x}+12a-8$
6912.3-m3 6912.3-m \(\Q(\sqrt{-2}) \) \( 2^{8} \cdot 3^{3} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.788156716$ $1.936139989$ 4.316128133 \( -\frac{8000}{81} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -4 a - 2\) , \( -12 a + 8\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-4a-2\right){x}-12a+8$
9216.2-h3 9216.2-h \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.878591722$ $2.371277522$ 2.946351043 \( -\frac{8000}{81} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -3\) , \( -9\bigr] \) ${y}^2={x}^{3}-{x}^{2}-3{x}-9$
9216.2-u3 9216.2-u \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.385972529$ $2.371277522$ 5.177424439 \( -\frac{8000}{81} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -3\) , \( 9\bigr] \) ${y}^2={x}^{3}+{x}^{2}-3{x}+9$
27648.2-c3 27648.2-c \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.880355775$ $1.369057715$ 3.408984042 \( -\frac{8000}{81} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -6 a + 3\) , \( 9 a - 45\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-6a+3\right){x}+9a-45$
27648.2-bu3 27648.2-bu \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.369057715$ 3.872279978 \( -\frac{8000}{81} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -6 a + 3\) , \( -9 a + 45\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-6a+3\right){x}-9a+45$
27648.3-b3 27648.3-b \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.880355775$ $1.369057715$ 3.408984042 \( -\frac{8000}{81} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 6 a + 3\) , \( -9 a - 45\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(6a+3\right){x}-9a-45$
27648.3-bt3 27648.3-bt \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.369057715$ 3.872279978 \( -\frac{8000}{81} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 6 a + 3\) , \( 9 a + 45\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(6a+3\right){x}+9a+45$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.