Learn more

Refine search


Results (14 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
288.2-b3 288.2-b Q(2)\Q(\sqrt{-2}) 2532 2^{5} \cdot 3^{2} 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 3.3534928313.353492831 1.185638761 800081 -\frac{8000}{81} [0 \bigl[0 , a a , 0 0 , 1 1 , 3a] 3 a\bigr] y2=x3+ax2+x+3a{y}^2={x}^{3}+a{x}^{2}+{x}+3a
288.2-c3 288.2-c Q(2)\Q(\sqrt{-2}) 2532 2^{5} \cdot 3^{2} 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 3.3534928313.353492831 1.185638761 800081 -\frac{8000}{81} [0 \bigl[0 , a -a , 0 0 , 1 1 , 3a] -3 a\bigr] y2=x3ax2+x3a{y}^2={x}^{3}-a{x}^{2}+{x}-3a
2592.3-b3 2592.3-b Q(2)\Q(\sqrt{-2}) 2534 2^{5} \cdot 3^{4} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.1178309431.117830943 1.580851681 800081 -\frac{8000}{81} [0 \bigl[0 , 0 0 , 0 0 , 15 15 , 68a] -68 a\bigr] y2=x3+15x68a{y}^2={x}^{3}+15{x}-68a
2592.3-f3 2592.3-f Q(2)\Q(\sqrt{-2}) 2534 2^{5} \cdot 3^{4} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.1178309431.117830943 1.580851681 800081 -\frac{8000}{81} [0 \bigl[0 , 0 0 , 0 0 , 15 15 , 68a] 68 a\bigr] y2=x3+15x+68a{y}^2={x}^{3}+15{x}+68a
6912.2-e3 6912.2-e Q(2)\Q(\sqrt{-2}) 2833 2^{8} \cdot 3^{3} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.9361399891.936139989 1.369057715 800081 -\frac{8000}{81} [0 \bigl[0 , a+1 a + 1 , 0 0 , 4a2 4 a - 2 , 12a8] -12 a - 8\bigr] y2=x3+(a+1)x2+(4a2)x12a8{y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(4a-2\right){x}-12a-8
6912.2-j3 6912.2-j Q(2)\Q(\sqrt{-2}) 2833 2^{8} \cdot 3^{3} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.7881567160.788156716 1.9361399891.936139989 4.316128133 800081 -\frac{8000}{81} [0 \bigl[0 , a1 -a - 1 , 0 0 , 4a2 4 a - 2 , 12a+8] 12 a + 8\bigr] y2=x3+(a1)x2+(4a2)x+12a+8{y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(4a-2\right){x}+12a+8
6912.3-b3 6912.3-b Q(2)\Q(\sqrt{-2}) 2833 2^{8} \cdot 3^{3} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.9361399891.936139989 1.369057715 800081 -\frac{8000}{81} [0 \bigl[0 , a+1 -a + 1 , 0 0 , 4a2 -4 a - 2 , 12a8] 12 a - 8\bigr] y2=x3+(a+1)x2+(4a2)x+12a8{y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-4a-2\right){x}+12a-8
6912.3-m3 6912.3-m Q(2)\Q(\sqrt{-2}) 2833 2^{8} \cdot 3^{3} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.7881567160.788156716 1.9361399891.936139989 4.316128133 800081 -\frac{8000}{81} [0 \bigl[0 , a1 a - 1 , 0 0 , 4a2 -4 a - 2 , 12a+8] -12 a + 8\bigr] y2=x3+(a1)x2+(4a2)x12a+8{y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-4a-2\right){x}-12a+8
9216.2-h3 9216.2-h Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.8785917220.878591722 2.3712775222.371277522 2.946351043 800081 -\frac{8000}{81} [0 \bigl[0 , 1 -1 , 0 0 , 3 -3 , 9] -9\bigr] y2=x3x23x9{y}^2={x}^{3}-{x}^{2}-3{x}-9
9216.2-u3 9216.2-u Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.3859725290.385972529 2.3712775222.371277522 5.177424439 800081 -\frac{8000}{81} [0 \bigl[0 , 1 1 , 0 0 , 3 -3 , 9] 9\bigr] y2=x3+x23x+9{y}^2={x}^{3}+{x}^{2}-3{x}+9
27648.2-c3 27648.2-c Q(2)\Q(\sqrt{-2}) 21033 2^{10} \cdot 3^{3} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.8803557750.880355775 1.3690577151.369057715 3.408984042 800081 -\frac{8000}{81} [0 \bigl[0 , a+1 a + 1 , 0 0 , 6a+3 -6 a + 3 , 9a45] 9 a - 45\bigr] y2=x3+(a+1)x2+(6a+3)x+9a45{y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-6a+3\right){x}+9a-45
27648.2-bu3 27648.2-bu Q(2)\Q(\sqrt{-2}) 21033 2^{10} \cdot 3^{3} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.3690577151.369057715 3.872279978 800081 -\frac{8000}{81} [0 \bigl[0 , a1 -a - 1 , 0 0 , 6a+3 -6 a + 3 , 9a+45] -9 a + 45\bigr] y2=x3+(a1)x2+(6a+3)x9a+45{y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-6a+3\right){x}-9a+45
27648.3-b3 27648.3-b Q(2)\Q(\sqrt{-2}) 21033 2^{10} \cdot 3^{3} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.8803557750.880355775 1.3690577151.369057715 3.408984042 800081 -\frac{8000}{81} [0 \bigl[0 , a+1 -a + 1 , 0 0 , 6a+3 6 a + 3 , 9a45] -9 a - 45\bigr] y2=x3+(a+1)x2+(6a+3)x9a45{y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(6a+3\right){x}-9a-45
27648.3-bt3 27648.3-bt Q(2)\Q(\sqrt{-2}) 21033 2^{10} \cdot 3^{3} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.3690577151.369057715 3.872279978 800081 -\frac{8000}{81} [0 \bigl[0 , a1 a - 1 , 0 0 , 6a+3 6 a + 3 , 9a+45] 9 a + 45\bigr] y2=x3+(a1)x2+(6a+3)x+9a+45{y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(6a+3\right){x}+9a+45
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.