Learn more

Refine search


Results (5 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
320.1-a5 320.1-a \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $35.25568626$ 0.985426388 \( \frac{55296}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -2\) , \( 1\bigr] \) ${y}^2={x}^{3}-2{x}+1$
1280.1-a5 1280.1-a \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $23.97511185$ 1.340249496 \( \frac{55296}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 2 \phi - 4\) , \( -2 \phi + 3\bigr] \) ${y}^2={x}^{3}+\left(2\phi-4\right){x}-2\phi+3$
1280.1-i5 1280.1-i \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.933393502$ $16.30392283$ 1.701421401 \( \frac{55296}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -2\) , \( -1\bigr] \) ${y}^2={x}^{3}-2{x}-1$
1280.1-j5 1280.1-j \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $23.97511185$ 1.340249496 \( \frac{55296}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 2 \phi - 4\) , \( 2 \phi - 3\bigr] \) ${y}^2={x}^{3}+\left(2\phi-4\right){x}+2\phi-3$
1600.1-a5 1600.1-a \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $7.291335953$ 1.630392283 \( \frac{55296}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -10 \phi - 10\) , \( -20 \phi - 15\bigr] \) ${y}^2={x}^{3}+\left(-10\phi-10\right){x}-20\phi-15$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.