Learn more

Refine search


Results (1-50 of 66 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
10608.a1 10608.a \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -1249, -16580]$ \(y^2=x^3-x^2-1249x-16580\) 2.3.0.a.1, 4.6.0.b.1, 24.12.0-4.b.1.4, 26.6.0.b.1, 52.12.0.e.1, $\ldots$
10608.a2 10608.a \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -1204, -17876]$ \(y^2=x^3-x^2-1204x-17876\) 2.3.0.a.1, 4.6.0.a.1, 24.12.0-4.a.1.1, 52.12.0.d.1, 312.24.0.?, $\ldots$
10608.b1 10608.b \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $6.621375383$ $[0, -1, 0, -1004, -1716]$ \(y^2=x^3-x^2-1004x-1716\) 2.3.0.a.1, 52.6.0.c.1, 204.6.0.?, 2652.12.0.?
10608.b2 10608.b \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $3.310687691$ $[0, -1, 0, -749, -7632]$ \(y^2=x^3-x^2-749x-7632\) 2.3.0.a.1, 26.6.0.b.1, 204.6.0.?, 2652.12.0.?
10608.c1 10608.c \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $1.184214025$ $[0, -1, 0, -579, -3222]$ \(y^2=x^3-x^2-579x-3222\) 2.3.0.a.1, 26.6.0.b.1, 204.6.0.?, 2652.12.0.?
10608.c2 10608.c \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $2.368428051$ $[0, -1, 0, 1716, -24336]$ \(y^2=x^3-x^2+1716x-24336\) 2.3.0.a.1, 52.6.0.c.1, 102.6.0.?, 2652.12.0.?
10608.d1 10608.d \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -28304, 666048]$ \(y^2=x^3-x^2-28304x+666048\) 2.3.0.a.1, 34.6.0.a.1, 104.6.0.?, 1768.12.0.?
10608.d2 10608.d \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 104816, 5032384]$ \(y^2=x^3-x^2+104816x+5032384\) 2.3.0.a.1, 68.6.0.c.1, 104.6.0.?, 1768.12.0.?
10608.e1 10608.e \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -84048, -4785840]$ \(y^2=x^3-x^2-84048x-4785840\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.?
10608.e2 10608.e \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -40108, 3053056]$ \(y^2=x^3-x^2-40108x+3053056\) 2.3.0.a.1, 34.6.0.a.1, 52.6.0.c.1, 884.12.0.?
10608.f1 10608.f \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -1548, -10080]$ \(y^2=x^3-x^2-1548x-10080\) 2.3.0.a.1, 34.6.0.a.1, 52.6.0.c.1, 884.12.0.?
10608.f2 10608.f \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -783, 8586]$ \(y^2=x^3-x^2-783x+8586\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.?
10608.g1 10608.g \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -4628, -119652]$ \(y^2=x^3-x^2-4628x-119652\) 2.3.0.a.1, 12.6.0.a.1, 52.6.0.c.1, 156.12.0.?
10608.g2 10608.g \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -293, -1740]$ \(y^2=x^3-x^2-293x-1740\) 2.3.0.a.1, 12.6.0.b.1, 26.6.0.b.1, 156.12.0.?
10608.h1 10608.h \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $1.376869513$ $[0, -1, 0, -1568, -17856]$ \(y^2=x^3-x^2-1568x-17856\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.?
10608.h2 10608.h \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $0.688434756$ $[0, -1, 0, -528, 4608]$ \(y^2=x^3-x^2-528x+4608\) 2.3.0.a.1, 34.6.0.a.1, 52.6.0.c.1, 884.12.0.?
10608.i1 10608.i \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $1.817766964$ $[0, -1, 0, -4488, -114192]$ \(y^2=x^3-x^2-4488x-114192\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.?
10608.i2 10608.i \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $0.908883482$ $[0, -1, 0, -328, -1040]$ \(y^2=x^3-x^2-328x-1040\) 2.3.0.a.1, 34.6.0.a.1, 52.6.0.c.1, 884.12.0.?
10608.j1 10608.j \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $2.330254836$ $[0, -1, 0, -4953, 19764]$ \(y^2=x^3-x^2-4953x+19764\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.9, 26.6.0.b.1, $\ldots$
10608.j2 10608.j \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $6.990764509$ $[0, -1, 0, -3153, -67104]$ \(y^2=x^3-x^2-3153x-67104\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.3, 26.6.0.b.1, $\ldots$
10608.j3 10608.j \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $13.98152901$ $[0, -1, 0, -3068, -70980]$ \(y^2=x^3-x^2-3068x-70980\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.3, 52.6.0.c.1, $\ldots$
10608.j4 10608.j \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $4.660509673$ $[0, -1, 0, 19612, 137676]$ \(y^2=x^3-x^2+19612x+137676\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.9, 52.6.0.c.1, $\ldots$
10608.k1 10608.k \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -11428, -465392]$ \(y^2=x^3-x^2-11428x-465392\) 2.3.0.a.1, 12.6.0.c.1, 26.6.0.b.1, 156.12.0.?
10608.k2 10608.k \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -443, -12810]$ \(y^2=x^3-x^2-443x-12810\) 2.3.0.a.1, 6.6.0.a.1, 52.6.0.c.1, 156.12.0.?
10608.l1 10608.l \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $2$ $\Z/2\Z$ $0.359980116$ $[0, 1, 0, -5240, 47124]$ \(y^2=x^3+x^2-5240x+47124\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.?
10608.l2 10608.l \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $2$ $\Z/2\Z$ $0.359980116$ $[0, 1, 0, -4200, 103284]$ \(y^2=x^3+x^2-4200x+103284\) 2.3.0.a.1, 34.6.0.a.1, 52.6.0.c.1, 884.12.0.?
10608.m1 10608.m \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $2.116943349$ $[0, 1, 0, -820, -9316]$ \(y^2=x^3+x^2-820x-9316\) 2.3.0.a.1, 34.6.0.a.1, 52.6.0.c.1, 884.12.0.?
10608.m2 10608.m \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $1.058471674$ $[0, 1, 0, -55, -136]$ \(y^2=x^3+x^2-55x-136\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.?
10608.n1 10608.n \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $2$ $\Z/2\Z$ $0.419024235$ $[0, 1, 0, -424, 3140]$ \(y^2=x^3+x^2-424x+3140\) 2.3.0.a.1, 34.6.0.a.1, 104.6.0.?, 1768.12.0.?
10608.n2 10608.n \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $2$ $\Z/2\Z$ $0.419024235$ $[0, 1, 0, 96, 10836]$ \(y^2=x^3+x^2+96x+10836\) 2.3.0.a.1, 68.6.0.c.1, 104.6.0.?, 1768.12.0.?
10608.o1 10608.o \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $0.861867321$ $[0, 1, 0, -1009, -9190]$ \(y^2=x^3+x^2-1009x-9190\) 2.3.0.a.1, 4.6.0.b.1, 24.12.0-4.b.1.4, 26.6.0.b.1, 52.12.0.e.1, $\ldots$
10608.o2 10608.o \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $1.723734642$ $[0, 1, 0, 2636, -57304]$ \(y^2=x^3+x^2+2636x-57304\) 2.3.0.a.1, 4.6.0.a.1, 24.12.0-4.a.1.1, 52.12.0.d.1, 312.24.0.?, $\ldots$
10608.p1 10608.p \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/4\Z$ $1.163453998$ $[0, 1, 0, -322784, 70467252]$ \(y^2=x^3+x^2-322784x+70467252\) 2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.n.1.2, 16.48.0-16.f.2.3, 26.6.0.b.1, $\ldots$
10608.p2 10608.p \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $2.326907997$ $[0, 1, 0, -22224, 857556]$ \(y^2=x^3+x^2-22224x+857556\) 2.6.0.a.1, 4.24.0-4.b.1.3, 8.48.0-8.d.2.1, 52.48.0-52.c.1.1, 104.96.0.?, $\ldots$
10608.p3 10608.p \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.163453998$ $[0, 1, 0, -8704, -305164]$ \(y^2=x^3+x^2-8704x-305164\) 2.6.0.a.1, 4.24.0-4.b.1.1, 8.48.0-8.d.1.2, 68.48.0-68.c.1.2, 104.96.0.?, $\ldots$
10608.p4 10608.p \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $2.326907997$ $[0, 1, 0, -8624, -311148]$ \(y^2=x^3+x^2-8624x-311148\) 2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.n.1.6, 16.48.0-16.f.1.3, 34.6.0.a.1, $\ldots$
10608.p5 10608.p \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $2.326907997$ $[0, 1, 0, 3536, -1083628]$ \(y^2=x^3+x^2+3536x-1083628\) 2.3.0.a.1, 4.12.0-4.c.1.2, 8.48.0-8.ba.1.1, 68.24.0-68.h.1.1, 136.96.0.?, $\ldots$
10608.p6 10608.p \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/4\Z$ $4.653815995$ $[0, 1, 0, 62016, 5878260]$ \(y^2=x^3+x^2+62016x+5878260\) 2.3.0.a.1, 4.12.0-4.c.1.1, 8.48.0-8.ba.2.2, 52.24.0-52.h.1.2, 104.96.0.?, $\ldots$
10608.q1 10608.q \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $5.779604515$ $[0, 1, 0, -17464, -894124]$ \(y^2=x^3+x^2-17464x-894124\) 2.3.0.a.1, 4.12.0-4.c.1.2, 104.24.0.?, 204.24.0.?, 5304.48.0.?
10608.q2 10608.q \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/4\Z$ $1.444901128$ $[0, 1, 0, -5304, 135252]$ \(y^2=x^3+x^2-5304x+135252\) 2.3.0.a.1, 4.12.0-4.c.1.1, 26.6.0.b.1, 52.24.0-52.g.1.2, 408.24.0.?, $\ldots$
10608.q3 10608.q \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.889802257$ $[0, 1, 0, -1144, -12844]$ \(y^2=x^3+x^2-1144x-12844\) 2.6.0.a.1, 4.12.0-2.a.1.1, 52.24.0-52.b.1.1, 204.24.0.?, 2652.48.0.?
10608.q4 10608.q \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $5.779604515$ $[0, 1, 0, 136, -1068]$ \(y^2=x^3+x^2+136x-1068\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 52.12.0-4.c.1.1, 104.24.0.?, $\ldots$
10608.r1 10608.r \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -14144, -652188]$ \(y^2=x^3+x^2-14144x-652188\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 52.12.0-4.c.1.1, 104.24.0.?, $\ldots$
10608.r2 10608.r \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $0$ $\Z/4\Z$ $1$ $[0, 1, 0, -1144, -4060]$ \(y^2=x^3+x^2-1144x-4060\) 2.3.0.a.1, 4.12.0-4.c.1.1, 26.6.0.b.1, 52.24.0-52.g.1.2, 408.24.0.?, $\ldots$
10608.r3 10608.r \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -884, -10404]$ \(y^2=x^3+x^2-884x-10404\) 2.6.0.a.1, 4.12.0-2.a.1.1, 52.24.0-52.b.1.1, 204.24.0.?, 2652.48.0.?
10608.r4 10608.r \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -39, -264]$ \(y^2=x^3+x^2-39x-264\) 2.3.0.a.1, 4.12.0-4.c.1.2, 102.6.0.?, 104.24.0.?, 204.24.0.?, $\ldots$
10608.s1 10608.s \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -14288, -659868]$ \(y^2=x^3+x^2-14288x-659868\) 2.3.0.a.1, 8.6.0.d.1, 34.6.0.a.1, 136.12.0.?
10608.s2 10608.s \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -7528, -1279084]$ \(y^2=x^3+x^2-7528x-1279084\) 2.3.0.a.1, 8.6.0.a.1, 68.6.0.c.1, 136.12.0.?
10608.t1 10608.t \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $0.233320794$ $[0, 1, 0, -132928, 18478532]$ \(y^2=x^3+x^2-132928x+18478532\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.?
10608.t2 10608.t \( 2^{4} \cdot 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $0.466641589$ $[0, 1, 0, -132668, 18555180]$ \(y^2=x^3+x^2-132668x+18555180\) 2.3.0.a.1, 34.6.0.a.1, 52.6.0.c.1, 884.12.0.?
Next   displayed columns for results