Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
11109.a1 |
11109a1 |
11109.a |
11109a |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 23^{2} \) |
\( - 3^{7} \cdot 7^{3} \cdot 23^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$966$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$231840$ |
$2.166809$ |
$929714176/750141$ |
$0.97832$ |
$5.24607$ |
$[0, -1, 1, 247396, -29820754]$ |
\(y^2+y=x^3-x^2+247396x-29820754\) |
966.2.0.? |
$[]$ |
11109.b1 |
11109b1 |
11109.b |
11109b |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 23^{2} \) |
\( - 3^{7} \cdot 7^{3} \cdot 23^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$966$ |
$2$ |
$0$ |
$0.481012704$ |
$1$ |
|
$6$ |
$10080$ |
$0.599062$ |
$929714176/750141$ |
$0.97832$ |
$3.22654$ |
$[0, -1, 1, 468, 2288]$ |
\(y^2+y=x^3-x^2+468x+2288\) |
966.2.0.? |
$[(8, 80)]$ |
11109.c1 |
11109j1 |
11109.c |
11109j |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 23^{2} \) |
\( - 3^{2} \cdot 7^{2} \cdot 23^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.2.0.1 |
|
$168$ |
$4$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$30912$ |
$1.356558$ |
$-8231953/441$ |
$0.83649$ |
$4.41157$ |
$[1, 0, 0, -17997, -972846]$ |
\(y^2+xy=x^3-17997x-972846\) |
4.2.0.a.1, 168.4.0.? |
$[]$ |
11109.d1 |
11109i5 |
11109.d |
11109i |
$6$ |
$8$ |
\( 3 \cdot 7 \cdot 23^{2} \) |
\( 3 \cdot 7^{2} \cdot 23^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.13 |
2B |
$7728$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$50688$ |
$1.641953$ |
$53297461115137/147$ |
$1.05087$ |
$5.41246$ |
$[1, 0, 0, -414747, 102772518]$ |
\(y^2+xy=x^3-414747x+102772518\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 12.12.0.h.1, 16.24.0.e.2, $\ldots$ |
$[]$ |
11109.d2 |
11109i4 |
11109.d |
11109i |
$6$ |
$8$ |
\( 3 \cdot 7 \cdot 23^{2} \) |
\( 3^{2} \cdot 7^{4} \cdot 23^{6} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.18 |
2Cs |
$3864$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$2$ |
$25344$ |
$1.295380$ |
$13027640977/21609$ |
$1.08149$ |
$4.51970$ |
$[1, 0, 0, -25932, 1602855]$ |
\(y^2+xy=x^3-25932x+1602855\) |
2.6.0.a.1, 4.12.0.b.1, 8.24.0.e.1, 12.24.0.c.1, 24.48.0.j.2, $\ldots$ |
$[]$ |
11109.d3 |
11109i3 |
11109.d |
11109i |
$6$ |
$8$ |
\( 3 \cdot 7 \cdot 23^{2} \) |
\( 3^{8} \cdot 7 \cdot 23^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.88 |
2B |
$7728$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$25344$ |
$1.295380$ |
$6570725617/45927$ |
$1.00160$ |
$4.44622$ |
$[1, 0, 0, -20642, -1136307]$ |
\(y^2+xy=x^3-20642x-1136307\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 28.12.0.h.1, 48.48.0.bf.1, $\ldots$ |
$[]$ |
11109.d4 |
11109i6 |
11109.d |
11109i |
$6$ |
$8$ |
\( 3 \cdot 7 \cdot 23^{2} \) |
\( - 3 \cdot 7^{8} \cdot 23^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.90 |
2B |
$7728$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$50688$ |
$1.641953$ |
$-4354703137/17294403$ |
$1.04266$ |
$4.62343$ |
$[1, 0, 0, -17997, 2604252]$ |
\(y^2+xy=x^3-17997x+2604252\) |
2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.bb.2, 12.12.0.g.1, $\ldots$ |
$[]$ |
11109.d5 |
11109i2 |
11109.d |
11109i |
$6$ |
$8$ |
\( 3 \cdot 7 \cdot 23^{2} \) |
\( 3^{4} \cdot 7^{2} \cdot 23^{6} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.10 |
2Cs |
$3864$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$2$ |
$12672$ |
$0.948805$ |
$7189057/3969$ |
$1.14862$ |
$3.71435$ |
$[1, 0, 0, -2127, 7920]$ |
\(y^2+xy=x^3-2127x+7920\) |
2.6.0.a.1, 4.12.0.b.1, 8.24.0.e.2, 24.48.0.w.2, 28.24.0.c.1, $\ldots$ |
$[]$ |
11109.d6 |
11109i1 |
11109.d |
11109i |
$6$ |
$8$ |
\( 3 \cdot 7 \cdot 23^{2} \) |
\( - 3^{2} \cdot 7 \cdot 23^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.1 |
2B |
$7728$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$6336$ |
$0.602232$ |
$103823/63$ |
$0.97868$ |
$3.25945$ |
$[1, 0, 0, 518, 1043]$ |
\(y^2+xy=x^3+518x+1043\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 14.6.0.b.1, 16.24.0.e.1, $\ldots$ |
$[]$ |
11109.e1 |
11109e1 |
11109.e |
11109e |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 23^{2} \) |
\( - 3^{2} \cdot 7^{2} \cdot 23^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.2.0.1 |
|
$3864$ |
$4$ |
$0$ |
$0.341374732$ |
$1$ |
|
$6$ |
$1344$ |
$-0.211189$ |
$-8231953/441$ |
$0.83649$ |
$2.39204$ |
$[1, 0, 0, -34, 77]$ |
\(y^2+xy=x^3-34x+77\) |
4.2.0.a.1, 3864.4.0.? |
$[(-1, 11)]$ |
11109.f1 |
11109d1 |
11109.f |
11109d |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 23^{2} \) |
\( 3 \cdot 7^{3} \cdot 23^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$42$ |
$2$ |
$0$ |
$2.606124536$ |
$1$ |
|
$0$ |
$39744$ |
$1.504950$ |
$160261033/1029$ |
$0.87602$ |
$4.72076$ |
$[1, 0, 1, -48415, 4073417]$ |
\(y^2+xy+y=x^3-48415x+4073417\) |
42.2.0.a.1 |
$[(925/3, 10237/3)]$ |
11109.g1 |
11109c2 |
11109.g |
11109c |
$2$ |
$2$ |
\( 3 \cdot 7 \cdot 23^{2} \) |
\( 3^{4} \cdot 7^{8} \cdot 23^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.128 |
2B |
$7728$ |
$192$ |
$9$ |
$3.139374207$ |
$1$ |
|
$0$ |
$16896$ |
$1.192419$ |
$6163717745375/466948881$ |
$0.98902$ |
$4.17113$ |
$[1, 0, 1, -8786, -296215]$ |
\(y^2+xy+y=x^3-8786x-296215\) |
2.3.0.a.1, 4.6.0.e.1, 8.24.0.bi.1, 48.48.1.fo.1, 92.12.0.?, $\ldots$ |
$[(-261/2, 395/2)]$ |
11109.g2 |
11109c1 |
11109.g |
11109c |
$2$ |
$2$ |
\( 3 \cdot 7 \cdot 23^{2} \) |
\( - 3^{8} \cdot 7^{4} \cdot 23^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.83 |
2B |
$7728$ |
$192$ |
$9$ |
$1.569687103$ |
$1$ |
|
$5$ |
$8448$ |
$0.845845$ |
$1349232625/15752961$ |
$0.98873$ |
$3.58358$ |
$[1, 0, 1, 529, -20491]$ |
\(y^2+xy+y=x^3+529x-20491\) |
2.3.0.a.1, 4.12.0.f.1, 8.24.0.bt.1, 46.6.0.a.1, 48.48.1.fv.1, $\ldots$ |
$[(69, 553)]$ |
11109.h1 |
11109g2 |
11109.h |
11109g |
$2$ |
$2$ |
\( 3 \cdot 7 \cdot 23^{2} \) |
\( 3^{4} \cdot 7^{8} \cdot 23^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.128 |
2B |
$7728$ |
$192$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$388608$ |
$2.760166$ |
$6163717745375/466948881$ |
$0.98902$ |
$6.19066$ |
$[1, 0, 1, -4647541, 3594749789]$ |
\(y^2+xy+y=x^3-4647541x+3594749789\) |
2.3.0.a.1, 4.6.0.e.1, 8.24.0.bi.1, 48.48.1.fo.1, 92.12.0.?, $\ldots$ |
$[]$ |
11109.h2 |
11109g1 |
11109.h |
11109g |
$2$ |
$2$ |
\( 3 \cdot 7 \cdot 23^{2} \) |
\( - 3^{8} \cdot 7^{4} \cdot 23^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.83 |
2B |
$7728$ |
$192$ |
$9$ |
$1$ |
$1$ |
|
$1$ |
$194304$ |
$2.413593$ |
$1349232625/15752961$ |
$0.98873$ |
$5.60311$ |
$[1, 0, 1, 280094, 249871151]$ |
\(y^2+xy+y=x^3+280094x+249871151\) |
2.3.0.a.1, 4.12.0.f.1, 8.24.0.bt.1, 46.6.0.a.1, 48.48.1.fv.1, $\ldots$ |
$[]$ |
11109.i1 |
11109h1 |
11109.i |
11109h |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 23^{2} \) |
\( 3 \cdot 7^{3} \cdot 23^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$42$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1728$ |
$-0.062798$ |
$160261033/1029$ |
$0.87602$ |
$2.70123$ |
$[1, 0, 1, -92, -343]$ |
\(y^2+xy+y=x^3-92x-343\) |
42.2.0.a.1 |
$[]$ |
11109.j1 |
11109k1 |
11109.j |
11109k |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 23^{2} \) |
\( - 3^{5} \cdot 7 \cdot 23^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$966$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$158400$ |
$1.693268$ |
$-98867482624/20696067$ |
$1.05025$ |
$4.77041$ |
$[0, 1, 1, -50960, 5150045]$ |
\(y^2+y=x^3+x^2-50960x+5150045\) |
966.2.0.? |
$[]$ |
11109.k1 |
11109f1 |
11109.k |
11109f |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 23^{2} \) |
\( - 3 \cdot 7 \cdot 23^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$966$ |
$2$ |
$0$ |
$4.238567559$ |
$1$ |
|
$0$ |
$10560$ |
$0.769917$ |
$512000/483$ |
$0.74348$ |
$3.43073$ |
$[0, 1, 1, 882, -7705]$ |
\(y^2+y=x^3+x^2+882x-7705\) |
966.2.0.? |
$[(2225/8, 131465/8)]$ |