⌂
→
Elliptic curves
→
Q
\Q
Q
→
1126
Citation
·
Feedback
·
Hide Menu
Elliptic curves over
Q
\Q
Q
of conductor 1126
Introduction
Overview
Random
Universe
Knowledge
L-functions
Rational
All
Modular forms
Classical
Maass
Hilbert
Bianchi
Varieties
Elliptic curves over
Q
\Q
Q
Elliptic curves over
Q
(
α
)
\Q(\alpha)
Q
(
α
)
Genus 2 curves over
Q
\Q
Q
Higher genus families
Abelian varieties over
F
q
\F_{q}
F
q
Fields
Number fields
p
p
p
-adic fields
Representations
Dirichlet characters
Artin representations
Groups
Galois groups
Sato-Tate groups
Database
↑
Learn more
Source and acknowledgments
Completeness of the data
Reliability of the data
Elliptic curve labels
Congruent number curves
Stein-Watkins dataset
BHKSSW dataset
Refine search
Advanced search options
Conductor
prime
p-power
sq-free
divides
multiple of
Discriminant
j-invariant
Rank
Bad
p
\ p
p
include
exclude
exactly
subset
Curves per isogeny class
Complex multiplication
Torsion
all
one
no potential CM
potential CM
CM field Q(sqrt(-1))
CM field Q(sqrt(-3))
CM field Q(sqrt(-7))
CM discriminant -3
CM discriminant -4
CM discriminant -7
CM discriminant -8
CM discriminant -11
CM discriminant -12
CM discriminant -16
CM discriminant -19
CM discriminant -27
CM discriminant -28
CM discriminant -43
CM discriminant -67
CM discriminant -163
trivial
order 4
order 8
order 12
ℤ/2ℤ
ℤ/3ℤ
ℤ/4ℤ
ℤ/5ℤ
ℤ/6ℤ
ℤ/7ℤ
ℤ/8ℤ
ℤ/9ℤ
ℤ/10ℤ
ℤ/12ℤ
ℤ/2ℤ⊕ℤ/2ℤ
ℤ/2ℤ⊕ℤ/4ℤ
ℤ/2ℤ⊕ℤ/6ℤ
ℤ/2ℤ⊕ℤ/8ℤ
Isogeny class degree
Cyclic isogeny degree
Isogeny class size
Integral points
Analytic order of Ш
p
p\
p
div
\
|Ш|
include
exclude
exactly
subset
Regulator
Reduction
Faltings height
semistable
not semistable
potentially good
not potentially good
Galois image
Adelic level
Adelic index
Adelic genus
Nonmax
ℓ
\ \ell
ℓ
include
exclude
exactly
subset
a
b
c
abc
a
b
c
quality
Szpiro ratio
Sort order
Select
Search again
Random curve
▲ conductor
rank
torsion
CM discriminant
regulator
analytic Ш
isogeny class size
isogeny class degree
integral points
modular degree
adelic level
adelic index
adelic genus
Faltings height
a
b
c
abc
a
b
c
quality
Szpiro ratio
columns to display
✓ LMFDB curve label
Cremona curve label
✓ LMFDB class label
Cremona class label
class size
class degree
✓ conductor
discriminant
✓ rank
✓ torsion
Qbar-end algebra
✓ CM discriminant
Sato-Tate group
semistable
potentially good
nonmaximal primes
ℓ-adic images
mod-ℓ images
adelic level
adelic index
adelic genus
regulator
analytic Ш
ш primes
integral points
modular degree
Faltings height
j-invariant
abc quality
szpiro ratio
Weierstrass coeffs
✓ Weierstrass equation
mod-m images
mw-generators
show all
Results (unique match)
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
Label
Cremona label
Class
Cremona class
Class size
Class degree
Conductor
Discriminant
Rank
Torsion
End
0
(
E
Q
‾
)
\textrm{End}^0(E_{\overline\Q})
End
0
(
E
Q
)
CM
Sato-Tate
Semistable
Potentially good
Nonmax
ℓ
\ell
ℓ
ℓ
\ell
ℓ
-adic images
mod-
ℓ
\ell
ℓ
images
Adelic level
Adelic index
Adelic genus
Regulator
Ш
an
Ш_{\textrm{an}}
Ш
an
Ш primes
Integral points
Modular degree
Faltings height
j-invariant
a
b
c
abc
a
b
c
quality
Szpiro ratio
Weierstrass coefficients
Weierstrass equation
mod-
m
m
m
images
MW-generators
1126.a1
1126a1
1126.a
1126a
1
1
1
1
1
1
2
⋅
563
2 \cdot 563
2
⋅
5
6
3
−
2
4
⋅
563
- 2^{4} \cdot 563
−
2
4
⋅
5
6
3
2
2
2
t
r
i
v
i
a
l
\mathsf{trivial}
t
r
i
v
i
a
l
Q
\Q
Q
S
U
(
2
)
\mathrm{SU}(2)
S
U
(
2
)
✓
1126
1126
1
1
2
6
2
2
2
0
0
0
0.229392466
0.229392466
0
.
2
2
9
3
9
2
4
6
6
1
1
1
18
18
1
8
176
176
1
7
6
−
0.560435
-0.560435
−
0
.
5
6
0
4
3
5
658503
/
9008
658503/9008
6
5
8
5
0
3
/
9
0
0
8
0.80611
0.80611
0
.
8
0
6
1
1
2.35075
2.35075
2
.
3
5
0
7
5
[
1
,
−
1
,
0
,
2
,
4
]
[1, -1, 0, 2, 4]
[
1
,
−
1
,
0
,
2
,
4
]
y
2
+
x
y
=
x
3
−
x
2
+
2
x
+
4
y^2+xy=x^3-x^2+2x+4
y
2
+
x
y
=
x
3
−
x
2
+
2
x
+
4
1126.2.0.?
[
(
0
,
2
)
,
(
4
,
6
)
]
[(0, 2), (4, 6)]
[
(
0
,
2
)
,
(
4
,
6
)
]
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV