Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
112632.a1 |
112632f2 |
112632.a |
112632f |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 13 \cdot 19^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$2.305947175$ |
$1$ |
|
$5$ |
$663552$ |
$1.433752$ |
$94875856/9477$ |
$0.90366$ |
$3.57465$ |
$[0, -1, 0, -21780, -1118124]$ |
\(y^2=x^3-x^2-21780x-1118124\) |
2.3.0.a.1, 12.6.0.c.1, 26.6.0.b.1, 156.12.0.? |
$[(-90, 324)]$ |
112632.a2 |
112632f1 |
112632.a |
112632f |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 13^{2} \cdot 19^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1.152973587$ |
$1$ |
|
$7$ |
$331776$ |
$1.087179$ |
$702464/4563$ |
$0.96739$ |
$3.11440$ |
$[0, -1, 0, 1685, -85664]$ |
\(y^2=x^3-x^2+1685x-85664\) |
2.3.0.a.1, 6.6.0.a.1, 52.6.0.c.1, 156.12.0.? |
$[(51, 361)]$ |
112632.b1 |
112632d1 |
112632.b |
112632d |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( 2^{10} \cdot 3 \cdot 13^{2} \cdot 19^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$456$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$4012800$ |
$2.223480$ |
$497005996/507$ |
$0.87257$ |
$4.59561$ |
$[0, -1, 0, -1140880, 469004956]$ |
\(y^2=x^3-x^2-1140880x+469004956\) |
2.3.0.a.1, 24.6.0.j.1, 114.6.0.?, 152.6.0.?, 456.12.0.? |
$[]$ |
112632.b2 |
112632d2 |
112632.b |
112632d |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{11} \cdot 3^{2} \cdot 13^{4} \cdot 19^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$456$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$8025600$ |
$2.570053$ |
$-108879878/257049$ |
$0.90470$ |
$4.66438$ |
$[0, -1, 0, -866520, 700016076]$ |
\(y^2=x^3-x^2-866520x+700016076\) |
2.3.0.a.1, 24.6.0.j.1, 152.6.0.?, 228.6.0.?, 456.12.0.? |
$[]$ |
112632.c1 |
112632o1 |
112632.c |
112632o |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{4} \cdot 3^{2} \cdot 13 \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1.060536271$ |
$1$ |
|
$4$ |
$207360$ |
$1.024401$ |
$-256/2223$ |
$1.01345$ |
$3.06061$ |
$[0, -1, 0, -120, -62199]$ |
\(y^2=x^3-x^2-120x-62199\) |
494.2.0.? |
$[(108, 1083)]$ |
112632.d1 |
112632a1 |
112632.d |
112632a |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{10} \cdot 3^{13} \cdot 13 \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2964$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7188480$ |
$2.885143$ |
$-136667088859396/142160998941$ |
$0.95285$ |
$5.00137$ |
$[0, -1, 0, -3904696, 4968497404]$ |
\(y^2=x^3-x^2-3904696x+4968497404\) |
2964.2.0.? |
$[]$ |
112632.e1 |
112632t1 |
112632.e |
112632t |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{11} \cdot 3^{17} \cdot 13 \cdot 19^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5928$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$49939200$ |
$3.792831$ |
$-1762982669155531250/4156929770033781$ |
$1.04903$ |
$5.92587$ |
$[0, -1, 0, -115378608, 1074597548364]$ |
\(y^2=x^3-x^2-115378608x+1074597548364\) |
5928.2.0.? |
$[]$ |
112632.f1 |
112632p1 |
112632.f |
112632p |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{4} \cdot 3^{12} \cdot 13 \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$2.766320590$ |
$1$ |
|
$0$ |
$2188800$ |
$2.432468$ |
$500000000/6908733$ |
$1.12427$ |
$4.50768$ |
$[0, -1, 0, 285792, 281171241]$ |
\(y^2=x^3-x^2+285792x+281171241\) |
494.2.0.? |
$[(-10212/7, 5000211/7)]$ |
112632.g1 |
112632q1 |
112632.g |
112632q |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{4} \cdot 3^{6} \cdot 13^{3} \cdot 19^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7257600$ |
$2.971470$ |
$-859256706676000000/3965752347687$ |
$1.02664$ |
$5.30800$ |
$[0, -1, 0, -18016908, -29546442207]$ |
\(y^2=x^3-x^2-18016908x-29546442207\) |
494.2.0.? |
$[]$ |
112632.h1 |
112632r2 |
112632.h |
112632r |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( 2^{8} \cdot 3^{2} \cdot 13 \cdot 19^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$230400$ |
$1.258358$ |
$137842000/117$ |
$0.90407$ |
$3.60676$ |
$[0, -1, 0, -24668, 1498404]$ |
\(y^2=x^3-x^2-24668x+1498404\) |
2.3.0.a.1, 12.6.0.c.1, 26.6.0.b.1, 156.12.0.? |
$[]$ |
112632.h2 |
112632r1 |
112632.h |
112632r |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{4} \cdot 3 \cdot 13^{2} \cdot 19^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$115200$ |
$0.911785$ |
$-256000/507$ |
$0.90091$ |
$2.95557$ |
$[0, -1, 0, -1203, 34188]$ |
\(y^2=x^3-x^2-1203x+34188\) |
2.3.0.a.1, 6.6.0.a.1, 52.6.0.c.1, 156.12.0.? |
$[]$ |
112632.i1 |
112632s2 |
112632.i |
112632s |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( 2^{8} \cdot 3^{2} \cdot 13 \cdot 19^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$9$ |
$3$ |
$1$ |
$3041280$ |
$2.427822$ |
$6772976019826000/42237$ |
$0.95227$ |
$5.12931$ |
$[0, -1, 0, -9035228, -10450369980]$ |
\(y^2=x^3-x^2-9035228x-10450369980\) |
2.3.0.a.1, 12.6.0.c.1, 26.6.0.b.1, 156.12.0.? |
$[]$ |
112632.i2 |
112632s1 |
112632.i |
112632s |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{4} \cdot 3 \cdot 13^{2} \cdot 19^{10} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$9$ |
$3$ |
$1$ |
$1520640$ |
$2.081249$ |
$-26409397504000/66072747$ |
$0.94071$ |
$4.41444$ |
$[0, -1, 0, -564363, -163351524]$ |
\(y^2=x^3-x^2-564363x-163351524\) |
2.3.0.a.1, 6.6.0.a.1, 52.6.0.c.1, 156.12.0.? |
$[]$ |
112632.j1 |
112632c1 |
112632.j |
112632c |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{11} \cdot 3^{11} \cdot 13 \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5928$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$274560$ |
$1.298882$ |
$-5064278294/2302911$ |
$0.92011$ |
$3.38580$ |
$[0, -1, 0, -8632, -409652]$ |
\(y^2=x^3-x^2-8632x-409652\) |
5928.2.0.? |
$[]$ |
112632.k1 |
112632n4 |
112632.k |
112632n |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( 2^{10} \cdot 3^{20} \cdot 13 \cdot 19^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$5928$ |
$48$ |
$0$ |
$14.29013515$ |
$1$ |
|
$1$ |
$8294400$ |
$3.032188$ |
$1677865892403172/861235747047$ |
$0.98251$ |
$5.12853$ |
$[0, -1, 0, -9007792, 3501439612]$ |
\(y^2=x^3-x^2-9007792x+3501439612\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 52.12.0-4.c.1.1, 76.12.0.?, $\ldots$ |
$[(-26322986/153, 395718229180/153)]$ |
112632.k2 |
112632n2 |
112632.k |
112632n |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( 2^{8} \cdot 3^{10} \cdot 13^{2} \cdot 19^{8} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$2964$ |
$48$ |
$0$ |
$7.145067579$ |
$1$ |
|
$3$ |
$4147200$ |
$2.685616$ |
$3462397543530448/3602520441$ |
$1.00447$ |
$5.07163$ |
$[0, -1, 0, -7224452, 7469727780]$ |
\(y^2=x^3-x^2-7224452x+7469727780\) |
2.6.0.a.1, 12.12.0.b.1, 52.12.0-2.a.1.1, 76.12.0.?, 156.24.0.?, $\ldots$ |
$[(-79868/9, 85120190/9)]$ |
112632.k3 |
112632n1 |
112632.k |
112632n |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( 2^{4} \cdot 3^{5} \cdot 13 \cdot 19^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$5928$ |
$48$ |
$0$ |
$14.29013515$ |
$1$ |
|
$1$ |
$2073600$ |
$2.339043$ |
$55356847905445888/60021$ |
$1.04663$ |
$5.07156$ |
$[0, -1, 0, -7222647, 7473648240]$ |
\(y^2=x^3-x^2-7222647x+7473648240\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 52.12.0-4.c.1.2, 152.12.0.?, $\ldots$ |
$[(4682881/45, 5100300271/45)]$ |
112632.k4 |
112632n3 |
112632.k |
112632n |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{10} \cdot 3^{5} \cdot 13^{4} \cdot 19^{10} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$5928$ |
$48$ |
$0$ |
$14.29013515$ |
$1$ |
|
$1$ |
$8294400$ |
$3.032188$ |
$-375718260235972/904469833683$ |
$0.96798$ |
$5.14095$ |
$[0, -1, 0, -5469992, 11187077628]$ |
\(y^2=x^3-x^2-5469992x+11187077628\) |
2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 76.12.0.?, $\ldots$ |
$[(51078606/85, 350543616696/85)]$ |
112632.l1 |
112632m1 |
112632.l |
112632m |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{10} \cdot 3^{6} \cdot 13^{3} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$12.58738713$ |
$1$ |
|
$0$ |
$342144$ |
$1.530218$ |
$-1120816166918692/1601613$ |
$0.97723$ |
$4.08130$ |
$[0, -1, 0, -155312, -23507268]$ |
\(y^2=x^3-x^2-155312x-23507268\) |
52.2.0.a.1 |
$[(1081793/44, 680747193/44)]$ |
112632.m1 |
112632b4 |
112632.m |
112632b |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( 2^{10} \cdot 3 \cdot 13 \cdot 19^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$5928$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$442368$ |
$1.675344$ |
$62275269892/39$ |
$1.05219$ |
$4.25150$ |
$[0, -1, 0, -300472, 63495100]$ |
\(y^2=x^3-x^2-300472x+63495100\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 104.12.0.?, 152.12.0.?, $\ldots$ |
$[]$ |
112632.m2 |
112632b2 |
112632.m |
112632b |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( 2^{8} \cdot 3^{2} \cdot 13^{2} \cdot 19^{6} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$2964$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$221184$ |
$1.328772$ |
$61918288/1521$ |
$0.98715$ |
$3.53796$ |
$[0, -1, 0, -18892, 984340]$ |
\(y^2=x^3-x^2-18892x+984340\) |
2.6.0.a.1, 12.12.0.b.1, 52.12.0.b.1, 76.12.0.?, 156.24.0.?, $\ldots$ |
$[]$ |
112632.m3 |
112632b1 |
112632.m |
112632b |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( 2^{4} \cdot 3^{4} \cdot 13 \cdot 19^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$5928$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$110592$ |
$0.982198$ |
$2725888/1053$ |
$0.92420$ |
$3.03111$ |
$[0, -1, 0, -2647, -29348]$ |
\(y^2=x^3-x^2-2647x-29348\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 26.6.0.b.1, 52.12.0.g.1, $\ldots$ |
$[]$ |
112632.m4 |
112632b3 |
112632.m |
112632b |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{10} \cdot 3 \cdot 13^{4} \cdot 19^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$5928$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$442368$ |
$1.675344$ |
$48668/85683$ |
$1.07537$ |
$3.73206$ |
$[0, -1, 0, 2768, 3089692]$ |
\(y^2=x^3-x^2+2768x+3089692\) |
2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 76.12.0.?, $\ldots$ |
$[]$ |
112632.n1 |
112632e1 |
112632.n |
112632e |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{10} \cdot 3^{5} \cdot 13 \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2964$ |
$2$ |
$0$ |
$2.893553423$ |
$1$ |
|
$0$ |
$921600$ |
$1.655708$ |
$94559612/60021$ |
$0.84166$ |
$3.69354$ |
$[0, -1, 0, 34536, -780228]$ |
\(y^2=x^3-x^2+34536x-780228\) |
2964.2.0.? |
$[(706/3, 41876/3)]$ |
112632.o1 |
112632v1 |
112632.o |
112632v |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( 2^{10} \cdot 3 \cdot 13^{2} \cdot 19^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$456$ |
$12$ |
$0$ |
$2.391546443$ |
$1$ |
|
$3$ |
$211200$ |
$0.751262$ |
$497005996/507$ |
$0.87257$ |
$3.07679$ |
$[0, 1, 0, -3160, -69376]$ |
\(y^2=x^3+x^2-3160x-69376\) |
2.3.0.a.1, 24.6.0.j.1, 114.6.0.?, 152.6.0.?, 456.12.0.? |
$[(139, 1482)]$ |
112632.o2 |
112632v2 |
112632.o |
112632v |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{11} \cdot 3^{2} \cdot 13^{4} \cdot 19^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$456$ |
$12$ |
$0$ |
$4.783092886$ |
$1$ |
|
$1$ |
$422400$ |
$1.097836$ |
$-108879878/257049$ |
$0.90470$ |
$3.14557$ |
$[0, 1, 0, -2400, -102816]$ |
\(y^2=x^3+x^2-2400x-102816\) |
2.3.0.a.1, 24.6.0.j.1, 152.6.0.?, 228.6.0.?, 456.12.0.? |
$[(765/2, 20349/2)]$ |
112632.p1 |
112632k1 |
112632.p |
112632k |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{10} \cdot 3^{3} \cdot 13 \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2964$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1105920$ |
$1.906239$ |
$-344700718852/6669$ |
$0.89024$ |
$4.39861$ |
$[0, 1, 0, -531512, -149327904]$ |
\(y^2=x^3+x^2-531512x-149327904\) |
2964.2.0.? |
$[]$ |
112632.q1 |
112632bb1 |
112632.q |
112632bb |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{8} \cdot 3^{4} \cdot 13^{2} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$2.119829186$ |
$1$ |
|
$4$ |
$2764800$ |
$2.376041$ |
$-79891143083008/93892851$ |
$0.94140$ |
$4.74777$ |
$[0, 1, 0, -2056737, -1137152781]$ |
\(y^2=x^3+x^2-2056737x-1137152781\) |
38.2.0.a.1 |
$[(1773, 28158)]$ |
112632.r1 |
112632x1 |
112632.r |
112632x |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{4} \cdot 3^{4} \cdot 13^{3} \cdot 19^{7} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$0.890861301$ |
$1$ |
|
$14$ |
$414720$ |
$1.663572$ |
$-7850060032/3381183$ |
$0.84730$ |
$3.76374$ |
$[0, 1, 0, -37664, 3703245]$ |
\(y^2=x^3+x^2-37664x+3703245\) |
494.2.0.? |
$[(139, 1083), (82, 1083)]$ |
112632.s1 |
112632y4 |
112632.s |
112632y |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( 2^{10} \cdot 3^{8} \cdot 13 \cdot 19^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.10 |
2B |
$11856$ |
$192$ |
$3$ |
$1$ |
$1$ |
|
$1$ |
$774144$ |
$1.775053$ |
$3044193988/85293$ |
$0.95679$ |
$3.99201$ |
$[0, 1, 0, -109864, 13636160]$ |
\(y^2=x^3+x^2-109864x+13636160\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.o.1, 26.6.0.b.1, 48.24.0.i.1, $\ldots$ |
$[]$ |
112632.s2 |
112632y2 |
112632.s |
112632y |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 13^{2} \cdot 19^{6} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.4 |
2Cs |
$5928$ |
$192$ |
$3$ |
$1$ |
$1$ |
|
$3$ |
$387072$ |
$1.428480$ |
$37642192/13689$ |
$0.91195$ |
$3.49517$ |
$[0, 1, 0, -16004, -480384]$ |
\(y^2=x^3+x^2-16004x-480384\) |
2.6.0.a.1, 4.12.0.a.1, 24.24.0.k.1, 52.24.0.b.1, 76.24.0.?, $\ldots$ |
$[]$ |
112632.s3 |
112632y1 |
112632.s |
112632y |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 13 \cdot 19^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.10 |
2B |
$11856$ |
$192$ |
$3$ |
$1$ |
$4$ |
$2$ |
$1$ |
$193536$ |
$1.081905$ |
$420616192/117$ |
$0.96408$ |
$3.46431$ |
$[0, 1, 0, -14199, -655830]$ |
\(y^2=x^3+x^2-14199x-655830\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.o.1, 26.6.0.b.1, 48.24.0.i.1, $\ldots$ |
$[]$ |
112632.s4 |
112632y3 |
112632.s |
112632y |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{10} \cdot 3^{2} \cdot 13^{4} \cdot 19^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.9 |
2B |
$11856$ |
$192$ |
$3$ |
$1$ |
$4$ |
$2$ |
$1$ |
$774144$ |
$1.775053$ |
$269676572/257049$ |
$0.96683$ |
$3.78364$ |
$[0, 1, 0, 48976, -3339504]$ |
\(y^2=x^3+x^2+48976x-3339504\) |
2.3.0.a.1, 4.12.0.d.1, 12.24.0.e.1, 76.24.0.?, 104.24.0.?, $\ldots$ |
$[]$ |
112632.t1 |
112632ba1 |
112632.t |
112632ba |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 13 \cdot 19^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$2.953852883$ |
$1$ |
|
$3$ |
$110592$ |
$0.795045$ |
$256000/117$ |
$0.88864$ |
$2.82776$ |
$[0, 1, 0, -1203, 6966]$ |
\(y^2=x^3+x^2-1203x+6966\) |
2.3.0.a.1, 12.6.0.c.1, 26.6.0.b.1, 156.12.0.? |
$[(-21, 153)]$ |
112632.t2 |
112632ba2 |
112632.t |
112632ba |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{8} \cdot 3 \cdot 13^{2} \cdot 19^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1.476926441$ |
$1$ |
|
$3$ |
$221184$ |
$1.141619$ |
$686000/507$ |
$0.86569$ |
$3.15086$ |
$[0, 1, 0, 4212, 56784]$ |
\(y^2=x^3+x^2+4212x+56784\) |
2.3.0.a.1, 6.6.0.a.1, 52.6.0.c.1, 156.12.0.? |
$[(158, 2166)]$ |
112632.u1 |
112632g1 |
112632.u |
112632g |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{4} \cdot 3^{12} \cdot 13 \cdot 19^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$0.620957834$ |
$1$ |
|
$16$ |
$115200$ |
$0.960248$ |
$500000000/6908733$ |
$1.12427$ |
$2.98887$ |
$[0, 1, 0, 792, -40743]$ |
\(y^2=x^3+x^2+792x-40743\) |
494.2.0.? |
$[(63, 513), (576, 13851)]$ |
112632.v1 |
112632i1 |
112632.v |
112632i |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( 2^{4} \cdot 3^{10} \cdot 13 \cdot 19^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1612800$ |
$2.133537$ |
$22559008000000/277116957$ |
$0.99646$ |
$4.40052$ |
$[0, 1, 0, -535483, 149034986]$ |
\(y^2=x^3+x^2-535483x+149034986\) |
2.3.0.a.1, 12.6.0.c.1, 26.6.0.b.1, 156.12.0.? |
$[]$ |
112632.v2 |
112632i2 |
112632.v |
112632i |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{8} \cdot 3^{5} \cdot 13^{2} \cdot 19^{10} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$3225600$ |
$2.480110$ |
$-8346562000/5351892507$ |
$0.98365$ |
$4.56230$ |
$[0, 1, 0, -96868, 386413424]$ |
\(y^2=x^3+x^2-96868x+386413424\) |
2.3.0.a.1, 6.6.0.a.1, 52.6.0.c.1, 156.12.0.? |
$[]$ |
112632.w1 |
112632z1 |
112632.w |
112632z |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( 2^{4} \cdot 3^{18} \cdot 13 \cdot 19^{10} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$13.18893775$ |
$1$ |
|
$1$ |
$20736000$ |
$3.494839$ |
$1201953427358681344000/656357332110597$ |
$1.02901$ |
$5.93003$ |
$[0, 1, 0, -201496963, -1100455229650]$ |
\(y^2=x^3+x^2-201496963x-1100455229650\) |
2.3.0.a.1, 12.6.0.c.1, 26.6.0.b.1, 156.12.0.? |
$[(10745911/21, 26934093397/21)]$ |
112632.w2 |
112632z2 |
112632.w |
112632z |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{8} \cdot 3^{9} \cdot 13^{2} \cdot 19^{14} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$6.594468878$ |
$1$ |
|
$3$ |
$41472000$ |
$3.841412$ |
$-41980174295570098000/56494582655784507$ |
$1.00851$ |
$5.98331$ |
$[0, 1, 0, -165969148, -1500825282448]$ |
\(y^2=x^3+x^2-165969148x-1500825282448\) |
2.3.0.a.1, 6.6.0.a.1, 52.6.0.c.1, 156.12.0.? |
$[(24478, 3017238)]$ |
112632.x1 |
112632w1 |
112632.x |
112632w |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 13^{4} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$921600$ |
$1.919907$ |
$-8069733376/4883931$ |
$0.86937$ |
$4.01818$ |
$[0, 1, 0, -95785, 16288427]$ |
\(y^2=x^3+x^2-95785x+16288427\) |
38.2.0.a.1 |
$[]$ |
112632.y1 |
112632j1 |
112632.y |
112632j |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{10} \cdot 3 \cdot 13^{3} \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2964$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1658880$ |
$2.306595$ |
$-1987925163844/45207669$ |
$1.06708$ |
$4.55255$ |
$[0, 1, 0, -953160, 364828512]$ |
\(y^2=x^3+x^2-953160x+364828512\) |
2964.2.0.? |
$[]$ |
112632.z1 |
112632u1 |
112632.z |
112632u |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{11} \cdot 3^{11} \cdot 13 \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5928$ |
$2$ |
$0$ |
$2.562363948$ |
$1$ |
|
$2$ |
$5216640$ |
$2.771099$ |
$-5064278294/2302911$ |
$0.92011$ |
$4.90462$ |
$[0, 1, 0, -3116272, 2828500448]$ |
\(y^2=x^3+x^2-3116272x+2828500448\) |
5928.2.0.? |
$[(17087, 2222316)]$ |
112632.ba1 |
112632h1 |
112632.ba |
112632h |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{10} \cdot 3^{6} \cdot 13^{3} \cdot 19^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1.555247269$ |
$1$ |
|
$4$ |
$6500736$ |
$3.002438$ |
$-1120816166918692/1601613$ |
$0.97723$ |
$5.60011$ |
$[0, 1, 0, -56067752, 161572757472]$ |
\(y^2=x^3+x^2-56067752x+161572757472\) |
52.2.0.a.1 |
$[(4324, 468)]$ |
112632.bb1 |
112632l1 |
112632.bb |
112632l |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( 2^{4} \cdot 3^{10} \cdot 13^{3} \cdot 19^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1451520$ |
$2.008606$ |
$1909913257984/129730653$ |
$1.03790$ |
$4.18826$ |
$[0, 1, 0, -235131, -41307318]$ |
\(y^2=x^3+x^2-235131x-41307318\) |
2.3.0.a.1, 12.6.0.c.1, 26.6.0.b.1, 156.12.0.? |
$[]$ |
112632.bb2 |
112632l2 |
112632.bb |
112632l |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{8} \cdot 3^{5} \cdot 13^{6} \cdot 19^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$2903040$ |
$2.355179$ |
$77366117936/1172914587$ |
$1.04122$ |
$4.42838$ |
$[0, 1, 0, 203484, -177277968]$ |
\(y^2=x^3+x^2+203484x-177277968\) |
2.3.0.a.1, 6.6.0.a.1, 52.6.0.c.1, 156.12.0.? |
$[]$ |