Learn more

Refine search


Results (46 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
112632.a1 112632.a \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $2.305947175$ $[0, -1, 0, -21780, -1118124]$ \(y^2=x^3-x^2-21780x-1118124\) 2.3.0.a.1, 12.6.0.c.1, 26.6.0.b.1, 156.12.0.?
112632.a2 112632.a \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $1.152973587$ $[0, -1, 0, 1685, -85664]$ \(y^2=x^3-x^2+1685x-85664\) 2.3.0.a.1, 6.6.0.a.1, 52.6.0.c.1, 156.12.0.?
112632.b1 112632.b \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -1140880, 469004956]$ \(y^2=x^3-x^2-1140880x+469004956\) 2.3.0.a.1, 24.6.0.j.1, 114.6.0.?, 152.6.0.?, 456.12.0.?
112632.b2 112632.b \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -866520, 700016076]$ \(y^2=x^3-x^2-866520x+700016076\) 2.3.0.a.1, 24.6.0.j.1, 152.6.0.?, 228.6.0.?, 456.12.0.?
112632.c1 112632.c \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.060536271$ $[0, -1, 0, -120, -62199]$ \(y^2=x^3-x^2-120x-62199\) 494.2.0.?
112632.d1 112632.d \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -3904696, 4968497404]$ \(y^2=x^3-x^2-3904696x+4968497404\) 2964.2.0.?
112632.e1 112632.e \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -115378608, 1074597548364]$ \(y^2=x^3-x^2-115378608x+1074597548364\) 5928.2.0.?
112632.f1 112632.f \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $2.766320590$ $[0, -1, 0, 285792, 281171241]$ \(y^2=x^3-x^2+285792x+281171241\) 494.2.0.?
112632.g1 112632.g \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -18016908, -29546442207]$ \(y^2=x^3-x^2-18016908x-29546442207\) 494.2.0.?
112632.h1 112632.h \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -24668, 1498404]$ \(y^2=x^3-x^2-24668x+1498404\) 2.3.0.a.1, 12.6.0.c.1, 26.6.0.b.1, 156.12.0.?
112632.h2 112632.h \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -1203, 34188]$ \(y^2=x^3-x^2-1203x+34188\) 2.3.0.a.1, 6.6.0.a.1, 52.6.0.c.1, 156.12.0.?
112632.i1 112632.i \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -9035228, -10450369980]$ \(y^2=x^3-x^2-9035228x-10450369980\) 2.3.0.a.1, 12.6.0.c.1, 26.6.0.b.1, 156.12.0.?
112632.i2 112632.i \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -564363, -163351524]$ \(y^2=x^3-x^2-564363x-163351524\) 2.3.0.a.1, 6.6.0.a.1, 52.6.0.c.1, 156.12.0.?
112632.j1 112632.j \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -8632, -409652]$ \(y^2=x^3-x^2-8632x-409652\) 5928.2.0.?
112632.k1 112632.k \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $14.29013515$ $[0, -1, 0, -9007792, 3501439612]$ \(y^2=x^3-x^2-9007792x+3501439612\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 52.12.0-4.c.1.1, 76.12.0.?, $\ldots$
112632.k2 112632.k \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $7.145067579$ $[0, -1, 0, -7224452, 7469727780]$ \(y^2=x^3-x^2-7224452x+7469727780\) 2.6.0.a.1, 12.12.0.b.1, 52.12.0-2.a.1.1, 76.12.0.?, 156.24.0.?, $\ldots$
112632.k3 112632.k \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $14.29013515$ $[0, -1, 0, -7222647, 7473648240]$ \(y^2=x^3-x^2-7222647x+7473648240\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 52.12.0-4.c.1.2, 152.12.0.?, $\ldots$
112632.k4 112632.k \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $14.29013515$ $[0, -1, 0, -5469992, 11187077628]$ \(y^2=x^3-x^2-5469992x+11187077628\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 76.12.0.?, $\ldots$
112632.l1 112632.l \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $12.58738713$ $[0, -1, 0, -155312, -23507268]$ \(y^2=x^3-x^2-155312x-23507268\) 52.2.0.a.1
112632.m1 112632.m \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -300472, 63495100]$ \(y^2=x^3-x^2-300472x+63495100\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 104.12.0.?, 152.12.0.?, $\ldots$
112632.m2 112632.m \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -18892, 984340]$ \(y^2=x^3-x^2-18892x+984340\) 2.6.0.a.1, 12.12.0.b.1, 52.12.0.b.1, 76.12.0.?, 156.24.0.?, $\ldots$
112632.m3 112632.m \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -2647, -29348]$ \(y^2=x^3-x^2-2647x-29348\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 26.6.0.b.1, 52.12.0.g.1, $\ldots$
112632.m4 112632.m \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 2768, 3089692]$ \(y^2=x^3-x^2+2768x+3089692\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 76.12.0.?, $\ldots$
112632.n1 112632.n \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $2.893553423$ $[0, -1, 0, 34536, -780228]$ \(y^2=x^3-x^2+34536x-780228\) 2964.2.0.?
112632.o1 112632.o \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $2.391546443$ $[0, 1, 0, -3160, -69376]$ \(y^2=x^3+x^2-3160x-69376\) 2.3.0.a.1, 24.6.0.j.1, 114.6.0.?, 152.6.0.?, 456.12.0.?
112632.o2 112632.o \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $4.783092886$ $[0, 1, 0, -2400, -102816]$ \(y^2=x^3+x^2-2400x-102816\) 2.3.0.a.1, 24.6.0.j.1, 152.6.0.?, 228.6.0.?, 456.12.0.?
112632.p1 112632.p \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -531512, -149327904]$ \(y^2=x^3+x^2-531512x-149327904\) 2964.2.0.?
112632.q1 112632.q \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $2.119829186$ $[0, 1, 0, -2056737, -1137152781]$ \(y^2=x^3+x^2-2056737x-1137152781\) 38.2.0.a.1
112632.r1 112632.r \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $0.890861301$ $[0, 1, 0, -37664, 3703245]$ \(y^2=x^3+x^2-37664x+3703245\) 494.2.0.?
112632.s1 112632.s \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -109864, 13636160]$ \(y^2=x^3+x^2-109864x+13636160\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.o.1, 26.6.0.b.1, 48.24.0.i.1, $\ldots$
112632.s2 112632.s \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -16004, -480384]$ \(y^2=x^3+x^2-16004x-480384\) 2.6.0.a.1, 4.12.0.a.1, 24.24.0.k.1, 52.24.0.b.1, 76.24.0.?, $\ldots$
112632.s3 112632.s \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -14199, -655830]$ \(y^2=x^3+x^2-14199x-655830\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.o.1, 26.6.0.b.1, 48.24.0.i.1, $\ldots$
112632.s4 112632.s \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 48976, -3339504]$ \(y^2=x^3+x^2+48976x-3339504\) 2.3.0.a.1, 4.12.0.d.1, 12.24.0.e.1, 76.24.0.?, 104.24.0.?, $\ldots$
112632.t1 112632.t \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $2.953852883$ $[0, 1, 0, -1203, 6966]$ \(y^2=x^3+x^2-1203x+6966\) 2.3.0.a.1, 12.6.0.c.1, 26.6.0.b.1, 156.12.0.?
112632.t2 112632.t \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $1.476926441$ $[0, 1, 0, 4212, 56784]$ \(y^2=x^3+x^2+4212x+56784\) 2.3.0.a.1, 6.6.0.a.1, 52.6.0.c.1, 156.12.0.?
112632.u1 112632.u \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $0.620957834$ $[0, 1, 0, 792, -40743]$ \(y^2=x^3+x^2+792x-40743\) 494.2.0.?
112632.v1 112632.v \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -535483, 149034986]$ \(y^2=x^3+x^2-535483x+149034986\) 2.3.0.a.1, 12.6.0.c.1, 26.6.0.b.1, 156.12.0.?
112632.v2 112632.v \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -96868, 386413424]$ \(y^2=x^3+x^2-96868x+386413424\) 2.3.0.a.1, 6.6.0.a.1, 52.6.0.c.1, 156.12.0.?
112632.w1 112632.w \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $13.18893775$ $[0, 1, 0, -201496963, -1100455229650]$ \(y^2=x^3+x^2-201496963x-1100455229650\) 2.3.0.a.1, 12.6.0.c.1, 26.6.0.b.1, 156.12.0.?
112632.w2 112632.w \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $6.594468878$ $[0, 1, 0, -165969148, -1500825282448]$ \(y^2=x^3+x^2-165969148x-1500825282448\) 2.3.0.a.1, 6.6.0.a.1, 52.6.0.c.1, 156.12.0.?
112632.x1 112632.x \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -95785, 16288427]$ \(y^2=x^3+x^2-95785x+16288427\) 38.2.0.a.1
112632.y1 112632.y \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -953160, 364828512]$ \(y^2=x^3+x^2-953160x+364828512\) 2964.2.0.?
112632.z1 112632.z \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $2.562363948$ $[0, 1, 0, -3116272, 2828500448]$ \(y^2=x^3+x^2-3116272x+2828500448\) 5928.2.0.?
112632.ba1 112632.ba \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.555247269$ $[0, 1, 0, -56067752, 161572757472]$ \(y^2=x^3+x^2-56067752x+161572757472\) 52.2.0.a.1
112632.bb1 112632.bb \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -235131, -41307318]$ \(y^2=x^3+x^2-235131x-41307318\) 2.3.0.a.1, 12.6.0.c.1, 26.6.0.b.1, 156.12.0.?
112632.bb2 112632.bb \( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 203484, -177277968]$ \(y^2=x^3+x^2+203484x-177277968\) 2.3.0.a.1, 6.6.0.a.1, 52.6.0.c.1, 156.12.0.?
  displayed columns for results