Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
122018.a1 |
122018p1 |
122018.a |
122018p |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2 \cdot 13^{7} \cdot 19^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$9192960$ |
$2.484455$ |
$-25334470953/9386$ |
$0.90338$ |
$4.86789$ |
$[1, -1, 0, -3732988, 2777908498]$ |
\(y^2+xy=x^3-x^2-3732988x+2777908498\) |
104.2.0.? |
$[]$ |
122018.b1 |
122018q1 |
122018.b |
122018q |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{17} \cdot 13^{8} \cdot 19^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$3290112$ |
$1.862165$ |
$-199565721/22151168$ |
$1.02905$ |
$3.89790$ |
$[1, -1, 0, -14650, 9480628]$ |
\(y^2+xy=x^3-x^2-14650x+9480628\) |
8.2.0.a.1 |
$[]$ |
122018.c1 |
122018m1 |
122018.c |
122018m |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{14} \cdot 13^{7} \cdot 19^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$24131520$ |
$3.447189$ |
$309512375/212992$ |
$1.10477$ |
$5.49735$ |
$[1, 0, 1, 43589659, 48176502480]$ |
\(y^2+xy+y=x^3+43589659x+48176502480\) |
52.2.0.a.1 |
$[]$ |
122018.d1 |
122018n1 |
122018.d |
122018n |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{4} \cdot 13^{2} \cdot 19^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.2.0.1 |
|
$104$ |
$4$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$622080$ |
$1.370052$ |
$-77086633/5776$ |
$0.84480$ |
$3.50743$ |
$[1, 0, 1, -17697, 961508]$ |
\(y^2+xy+y=x^3-17697x+961508\) |
4.2.0.a.1, 104.4.0.? |
$[]$ |
122018.e1 |
122018s1 |
122018.e |
122018s |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{35} \cdot 13^{3} \cdot 19^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$8.220705636$ |
$1$ |
|
$2$ |
$15724800$ |
$3.305847$ |
$-251347109804029/12403865550848$ |
$1.04840$ |
$5.37716$ |
$[1, 1, 0, -6170219, 54792825469]$ |
\(y^2+xy=x^3+x^2-6170219x+54792825469\) |
104.2.0.? |
$[(10977, 1139012)]$ |
122018.f1 |
122018j3 |
122018.f |
122018j |
$3$ |
$9$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{27} \cdot 13^{6} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$53352$ |
$1296$ |
$43$ |
$1$ |
$9$ |
$3$ |
$0$ |
$13296960$ |
$3.239864$ |
$-69173457625/2550136832$ |
$1.05462$ |
$5.30963$ |
$[1, 1, 0, -5217540, 36896684752]$ |
\(y^2+xy=x^3+x^2-5217540x+36896684752\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 152.2.0.?, 171.36.0.?, $\ldots$ |
$[]$ |
122018.f2 |
122018j1 |
122018.f |
122018j |
$3$ |
$9$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{3} \cdot 13^{6} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$53352$ |
$1296$ |
$43$ |
$1$ |
$9$ |
$3$ |
$0$ |
$1477440$ |
$2.141251$ |
$-413493625/152$ |
$0.93281$ |
$4.51652$ |
$[1, 1, 0, -946910, -355166612]$ |
\(y^2+xy=x^3+x^2-946910x-355166612\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 152.2.0.?, 171.36.0.?, $\ldots$ |
$[]$ |
122018.f3 |
122018j2 |
122018.f |
122018j |
$3$ |
$9$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{9} \cdot 13^{6} \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$53352$ |
$1296$ |
$43$ |
$1$ |
$9$ |
$3$ |
$0$ |
$4432320$ |
$2.690559$ |
$94196375/3511808$ |
$1.01875$ |
$4.74449$ |
$[1, 1, 0, 578315, -1347844051]$ |
\(y^2+xy=x^3+x^2+578315x-1347844051\) |
3.12.0.a.1, 9.36.0.b.1, 152.2.0.?, 171.108.4.?, 312.24.0.?, $\ldots$ |
$[]$ |
122018.g1 |
122018k2 |
122018.g |
122018k |
$2$ |
$3$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{9} \cdot 13^{6} \cdot 19^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 9.12.0.2 |
3B |
$17784$ |
$144$ |
$2$ |
$4.489323978$ |
$1$ |
|
$6$ |
$248832$ |
$1.178879$ |
$-246579625/512$ |
$0.97319$ |
$3.46701$ |
$[1, 1, 0, -15720, 753472]$ |
\(y^2+xy=x^3+x^2-15720x+753472\) |
3.4.0.a.1, 8.2.0.a.1, 9.12.0.b.1, 24.8.0.a.1, 72.24.0.?, $\ldots$ |
$[(109, 537), (267/2, 409/2)]$ |
122018.g2 |
122018k1 |
122018.g |
122018k |
$2$ |
$3$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{3} \cdot 13^{6} \cdot 19^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 9.12.0.2 |
3B |
$17784$ |
$144$ |
$2$ |
$4.489323978$ |
$1$ |
|
$6$ |
$82944$ |
$0.629573$ |
$2375/8$ |
$0.86529$ |
$2.61479$ |
$[1, 1, 0, 335, 5309]$ |
\(y^2+xy=x^3+x^2+335x+5309\) |
3.4.0.a.1, 8.2.0.a.1, 9.12.0.b.1, 24.8.0.a.1, 72.24.0.?, $\ldots$ |
$[(5, 82), (-409/11, 88017/11)]$ |
122018.h1 |
122018l3 |
122018.h |
122018l |
$3$ |
$9$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{9} \cdot 13^{7} \cdot 19^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$17784$ |
$144$ |
$3$ |
$4.926201124$ |
$1$ |
|
$6$ |
$7185024$ |
$2.809082$ |
$-10730978619193/6656$ |
$1.02193$ |
$5.38430$ |
$[1, 1, 0, -28034906, 57122632468]$ |
\(y^2+xy=x^3+x^2-28034906x+57122632468\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 312.8.0.?, $\ldots$ |
$[(3047, -594), (3057, -1348)]$ |
122018.h2 |
122018l2 |
122018.h |
122018l |
$3$ |
$9$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{3} \cdot 13^{9} \cdot 19^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$17784$ |
$144$ |
$3$ |
$4.926201124$ |
$1$ |
|
$4$ |
$2395008$ |
$2.259773$ |
$-10218313/17576$ |
$0.94717$ |
$4.31828$ |
$[1, 1, 0, -275811, 111003157]$ |
\(y^2+xy=x^3+x^2-275811x+111003157\) |
3.12.0.a.1, 104.2.0.?, 117.36.0.?, 312.24.1.?, 456.24.0.?, $\ldots$ |
$[(5413, 393852), (16213/4, 1858853/4)]$ |
122018.h3 |
122018l1 |
122018.h |
122018l |
$3$ |
$9$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2 \cdot 13^{7} \cdot 19^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$17784$ |
$144$ |
$3$ |
$4.926201124$ |
$1$ |
|
$6$ |
$798336$ |
$1.710468$ |
$12167/26$ |
$0.84415$ |
$3.71018$ |
$[1, 1, 0, 29234, -3144682]$ |
\(y^2+xy=x^3+x^2+29234x-3144682\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 312.8.0.?, $\ldots$ |
$[(967, 30021), (14789/5, 1823802/5)]$ |
122018.i1 |
122018g1 |
122018.i |
122018g |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( 2^{4} \cdot 13^{10} \cdot 19^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$988$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$628992$ |
$1.577595$ |
$86697/16$ |
$1.10590$ |
$3.66366$ |
$[1, -1, 0, -33916, 1992576]$ |
\(y^2+xy=x^3-x^2-33916x+1992576\) |
2.2.0.a.1, 494.6.0.?, 988.12.0.? |
$[]$ |
122018.j1 |
122018f4 |
122018.j |
122018f |
$4$ |
$4$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( 2 \cdot 13^{10} \cdot 19^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.13 |
2B |
$1976$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$8225280$ |
$2.826923$ |
$969417177273/1085318$ |
$0.93818$ |
$5.17902$ |
$[1, -1, 0, -12579293, -17152694649]$ |
\(y^2+xy=x^3-x^2-12579293x-17152694649\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.6, 52.12.0-4.c.1.1, 104.24.0.?, $\ldots$ |
$[]$ |
122018.j2 |
122018f3 |
122018.j |
122018f |
$4$ |
$4$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( 2 \cdot 13^{7} \cdot 19^{10} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.13 |
2B |
$1976$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$8225280$ |
$2.826923$ |
$345505073913/3388346$ |
$0.97212$ |
$5.09093$ |
$[1, -1, 0, -8918753, 10166891515]$ |
\(y^2+xy=x^3-x^2-8918753x+10166891515\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.6, 76.12.0.?, 104.24.0.?, $\ldots$ |
$[]$ |
122018.j3 |
122018f2 |
122018.j |
122018f |
$4$ |
$4$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( 2^{2} \cdot 13^{8} \cdot 19^{8} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.2 |
2Cs |
$1976$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$4112640$ |
$2.480350$ |
$469097433/244036$ |
$0.96358$ |
$4.52724$ |
$[1, -1, 0, -987583, -119835975]$ |
\(y^2+xy=x^3-x^2-987583x-119835975\) |
2.6.0.a.1, 8.12.0-2.a.1.2, 52.12.0-2.a.1.1, 76.12.0.?, 104.24.0.?, $\ldots$ |
$[]$ |
122018.j4 |
122018f1 |
122018.j |
122018f |
$4$ |
$4$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{4} \cdot 13^{7} \cdot 19^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.13 |
2B |
$1976$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$2056320$ |
$2.133778$ |
$6128487/3952$ |
$0.83799$ |
$4.15686$ |
$[1, -1, 0, 232597, -14656459]$ |
\(y^2+xy=x^3-x^2+232597x-14656459\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.6, 52.12.0-4.c.1.2, 76.12.0.?, $\ldots$ |
$[]$ |
122018.k1 |
122018a1 |
122018.k |
122018a |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( 2^{8} \cdot 13^{8} \cdot 19^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.4.0.2 |
2Cn |
$988$ |
$12$ |
$0$ |
$3.978670120$ |
$1$ |
|
$0$ |
$17072640$ |
$3.466999$ |
$497630516409/256$ |
$1.10883$ |
$6.06290$ |
$[1, -1, 0, -396508930, 3039075894804]$ |
\(y^2+xy=x^3-x^2-396508930x+3039075894804\) |
2.2.0.a.1, 4.4.0-2.a.1.1, 494.6.0.?, 988.12.0.? |
$[(102436/3, 421058/3)]$ |
122018.l1 |
122018e2 |
122018.l |
122018e |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{14} \cdot 13^{8} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$6916$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$7862400$ |
$2.951622$ |
$-38575685889/16384$ |
$1.08547$ |
$5.34181$ |
$[1, -1, 0, -23743940, 44554797392]$ |
\(y^2+xy=x^3-x^2-23743940x+44554797392\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.1, 76.16.0.?, 91.24.0.?, $\ldots$ |
$[]$ |
122018.l2 |
122018e1 |
122018.l |
122018e |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{2} \cdot 13^{8} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$6916$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$1123200$ |
$1.978666$ |
$351/4$ |
$1.27279$ |
$4.01088$ |
$[1, -1, 0, 49570, -18378008]$ |
\(y^2+xy=x^3-x^2+49570x-18378008\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 76.16.0.?, 91.24.0.?, $\ldots$ |
$[]$ |
122018.m1 |
122018d1 |
122018.m |
122018d |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( 2^{8} \cdot 13^{2} \cdot 19^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$988$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$69120$ |
$0.712306$ |
$497630516409/256$ |
$1.10883$ |
$3.24045$ |
$[1, -1, 0, -6499, -200043]$ |
\(y^2+xy=x^3-x^2-6499x-200043\) |
2.2.0.a.1, 494.6.0.?, 988.12.0.? |
$[]$ |
122018.n1 |
122018b1 |
122018.n |
122018b |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( 2^{4} \cdot 13^{4} \cdot 19^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.4.0.2 |
2Cn |
$988$ |
$12$ |
$0$ |
$2.995411086$ |
$1$ |
|
$0$ |
$919296$ |
$1.767340$ |
$86697/16$ |
$1.10590$ |
$3.85808$ |
$[1, -1, 0, -72448, -6176208]$ |
\(y^2+xy=x^3-x^2-72448x-6176208\) |
2.2.0.a.1, 4.4.0-2.a.1.1, 494.6.0.?, 988.12.0.? |
$[(-1532/3, 31900/3)]$ |
122018.o1 |
122018i1 |
122018.o |
122018i |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{7} \cdot 13^{8} \cdot 19^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$128701440$ |
$4.090683$ |
$-934165699635529/21632$ |
$1.11755$ |
$6.77128$ |
$[1, 0, 1, -6299394053, -192440940653648]$ |
\(y^2+xy+y=x^3-6299394053x-192440940653648\) |
8.2.0.a.1 |
$[]$ |
122018.p1 |
122018r2 |
122018.p |
122018r |
$2$ |
$5$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{15} \cdot 13^{3} \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3, 5$ |
3.6.0.1, 5.6.0.1 |
3Ns, 5B |
$29640$ |
$576$ |
$17$ |
$5.257360792$ |
$1$ |
|
$2$ |
$786240$ |
$1.773361$ |
$-1680914269/32768$ |
$1.02322$ |
$3.98203$ |
$[1, 0, 1, -116250, -15520308]$ |
\(y^2+xy+y=x^3-116250x-15520308\) |
3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.1, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$ |
$[(3450, 199893)]$ |
122018.p2 |
122018r1 |
122018.p |
122018r |
$2$ |
$5$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{3} \cdot 13^{3} \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3, 5$ |
3.6.0.1, 5.6.0.1 |
3Ns, 5B |
$29640$ |
$576$ |
$17$ |
$1.051472158$ |
$1$ |
|
$4$ |
$157248$ |
$0.968641$ |
$1331/8$ |
$0.93577$ |
$2.97085$ |
$[1, 0, 1, 1075, 41680]$ |
\(y^2+xy+y=x^3+1075x+41680\) |
3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.2, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$ |
$[(-8, 184)]$ |
122018.q1 |
122018h1 |
122018.q |
122018h |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{5} \cdot 13^{7} \cdot 19^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2419200$ |
$2.436516$ |
$214921799/150176$ |
$0.86097$ |
$4.46059$ |
$[1, 0, 1, 761341, -116391650]$ |
\(y^2+xy+y=x^3+761341x-116391650\) |
104.2.0.? |
$[]$ |
122018.r1 |
122018c1 |
122018.r |
122018c |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{3} \cdot 13^{6} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.3.0.1 |
3Nn |
$456$ |
$12$ |
$1$ |
$27.31289755$ |
$1$ |
|
$0$ |
$5116320$ |
$2.343288$ |
$-27/8$ |
$1.31757$ |
$4.39089$ |
$[1, -1, 0, -72448, 170017784]$ |
\(y^2+xy=x^3-x^2-72448x+170017784\) |
3.3.0.a.1, 24.6.0.m.1, 57.6.0.a.1, 152.2.0.?, 456.12.1.? |
$[(58988342840659/61479, 451171885150356708205/61479)]$ |
122018.s1 |
122018o1 |
122018.s |
122018o |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2 \cdot 13^{10} \cdot 19^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$16$ |
$2$ |
$0$ |
$967680$ |
$1.612333$ |
$-66068051625/57122$ |
$0.95293$ |
$3.94419$ |
$[1, -1, 0, -101347, -12402337]$ |
\(y^2+xy=x^3-x^2-101347x-12402337\) |
8.2.0.a.1 |
$[]$ |
122018.t1 |
122018ba1 |
122018.t |
122018ba |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{3} \cdot 13^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.3.0.1 |
3Nn |
$456$ |
$12$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$269280$ |
$0.871067$ |
$-27/8$ |
$1.31757$ |
$2.88246$ |
$[1, -1, 1, -201, -24735]$ |
\(y^2+xy+y=x^3-x^2-201x-24735\) |
3.3.0.a.1, 24.6.0.m.1, 57.6.0.a.1, 152.2.0.?, 456.12.1.? |
$[]$ |
122018.u1 |
122018z1 |
122018.u |
122018z |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2 \cdot 13^{10} \cdot 19^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$18385920$ |
$3.084553$ |
$-66068051625/57122$ |
$0.95293$ |
$5.45262$ |
$[1, -1, 1, -36586335, 85250561049]$ |
\(y^2+xy+y=x^3-x^2-36586335x+85250561049\) |
8.2.0.a.1 |
$[]$ |
122018.v1 |
122018bg1 |
122018.v |
122018bg |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{4} \cdot 13^{8} \cdot 19^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.4.0.2 |
|
$8$ |
$4$ |
$0$ |
$0.988215544$ |
$1$ |
|
$4$ |
$8087040$ |
$2.652527$ |
$-77086633/5776$ |
$0.84480$ |
$4.82145$ |
$[1, 0, 0, -2990712, 2115424336]$ |
\(y^2+xy=x^3-2990712x+2115424336\) |
4.2.0.a.1, 8.4.0-4.a.1.1 |
$[(-1338, 61678)]$ |
122018.w1 |
122018w1 |
122018.w |
122018w |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{7} \cdot 13^{8} \cdot 19^{4} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$0.786704031$ |
$1$ |
|
$18$ |
$6773760$ |
$2.618465$ |
$-934165699635529/21632$ |
$1.11755$ |
$5.26285$ |
$[1, 1, 1, -17449845, 28049357851]$ |
\(y^2+xy+y=x^3+x^2-17449845x+28049357851\) |
8.2.0.a.1 |
$[(2449, 1986), (21703/3, -33244/3)]$ |
122018.x1 |
122018bj1 |
122018.x |
122018bj |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{35} \cdot 13^{9} \cdot 19^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$204422400$ |
$4.588318$ |
$-251347109804029/12403865550848$ |
$1.04840$ |
$6.69118$ |
$[1, 1, 1, -1042767099, 120385051390729]$ |
\(y^2+xy+y=x^3+x^2-1042767099x+120385051390729\) |
104.2.0.? |
$[]$ |
122018.y1 |
122018u1 |
122018.y |
122018u |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( 2^{4} \cdot 13^{10} \cdot 19^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$988$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11950848$ |
$3.049816$ |
$86697/16$ |
$1.10590$ |
$5.17209$ |
$[1, -1, 1, -12243744, -13605860173]$ |
\(y^2+xy+y=x^3-x^2-12243744x-13605860173\) |
2.2.0.a.1, 52.4.0-2.a.1.1, 494.6.0.?, 988.12.0.? |
$[]$ |
122018.z1 |
122018bc1 |
122018.z |
122018bc |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( 2^{8} \cdot 13^{8} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$988$ |
$12$ |
$0$ |
$2.243675637$ |
$1$ |
|
$2$ |
$898560$ |
$1.994781$ |
$497630516409/256$ |
$1.10883$ |
$4.55447$ |
$[1, -1, 1, -1098363, -442789525]$ |
\(y^2+xy+y=x^3-x^2-1098363x-442789525\) |
2.2.0.a.1, 76.4.0.?, 494.6.0.?, 988.12.0.? |
$[(-605, 314)]$ |
122018.ba1 |
122018bb2 |
122018.ba |
122018bb |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{14} \cdot 13^{2} \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$6916$ |
$768$ |
$21$ |
$0.457954331$ |
$1$ |
|
$4$ |
$604800$ |
$1.669147$ |
$-38575685889/16384$ |
$1.08547$ |
$4.02779$ |
$[1, -1, 1, -140497, 20312257]$ |
\(y^2+xy+y=x^3-x^2-140497x+20312257\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.1, 91.24.0.?, 364.384.21.?, $\ldots$ |
$[(271, 1308)]$ |
122018.ba2 |
122018bb1 |
122018.ba |
122018bb |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{2} \cdot 13^{2} \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$6916$ |
$768$ |
$21$ |
$3.205680318$ |
$1$ |
|
$2$ |
$86400$ |
$0.696192$ |
$351/4$ |
$1.27279$ |
$2.69686$ |
$[1, -1, 1, 293, -8433]$ |
\(y^2+xy+y=x^3-x^2+293x-8433\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 364.384.21.?, $\ldots$ |
$[(651, 16280)]$ |
122018.bb1 |
122018t1 |
122018.bb |
122018t |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( 2^{8} \cdot 13^{2} \cdot 19^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$988$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1313280$ |
$2.184525$ |
$497630516409/256$ |
$1.10883$ |
$4.74888$ |
$[1, -1, 1, -2346207, 1383825863]$ |
\(y^2+xy+y=x^3-x^2-2346207x+1383825863\) |
2.2.0.a.1, 52.4.0-2.a.1.1, 494.6.0.?, 988.12.0.? |
$[]$ |
122018.bc1 |
122018bd1 |
122018.bc |
122018bd |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( 2^{4} \cdot 13^{4} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$988$ |
$12$ |
$0$ |
$0.584254428$ |
$1$ |
|
$2$ |
$48384$ |
$0.295121$ |
$86697/16$ |
$1.10590$ |
$2.34964$ |
$[1, -1, 1, -201, 953]$ |
\(y^2+xy+y=x^3-x^2-201x+953\) |
2.2.0.a.1, 76.4.0.?, 494.6.0.?, 988.12.0.? |
$[(-3, 40)]$ |
122018.bd1 |
122018v2 |
122018.bd |
122018v |
$2$ |
$3$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{9} \cdot 13^{6} \cdot 19^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 9.12.0.2 |
3B |
$17784$ |
$144$ |
$2$ |
$1$ |
$4$ |
$2$ |
$0$ |
$4727808$ |
$2.651100$ |
$-246579625/512$ |
$0.97319$ |
$4.97544$ |
$[1, 0, 0, -5675108, -5213464816]$ |
\(y^2+xy=x^3-5675108x-5213464816\) |
3.4.0.a.1, 8.2.0.a.1, 9.12.0.b.1, 24.8.0.a.1, 39.8.0-3.a.1.2, $\ldots$ |
$[]$ |
122018.bd2 |
122018v1 |
122018.bd |
122018v |
$2$ |
$3$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{3} \cdot 13^{6} \cdot 19^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 9.12.0.2 |
3B |
$17784$ |
$144$ |
$2$ |
$1$ |
$4$ |
$2$ |
$0$ |
$1575936$ |
$2.101791$ |
$2375/8$ |
$0.86529$ |
$4.12322$ |
$[1, 0, 0, 120747, -35447959]$ |
\(y^2+xy=x^3+120747x-35447959\) |
3.4.0.a.1, 8.2.0.a.1, 9.12.0.b.1, 24.8.0.a.1, 39.8.0-3.a.1.1, $\ldots$ |
$[]$ |
122018.be1 |
122018be1 |
122018.be |
122018be |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{13} \cdot 13^{9} \cdot 19^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$5.956320583$ |
$1$ |
|
$2$ |
$18869760$ |
$3.393597$ |
$-110931033861649/6497214464$ |
$0.94569$ |
$5.59196$ |
$[1, 0, 0, -61071280, -192774653696]$ |
\(y^2+xy=x^3-61071280x-192774653696\) |
104.2.0.? |
$[(229776, 109963600)]$ |
122018.bf1 |
122018bi2 |
122018.bf |
122018bi |
$2$ |
$5$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{15} \cdot 13^{9} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3, 5$ |
3.6.0.1, 5.6.0.1 |
3Ns, 5B |
$29640$ |
$576$ |
$17$ |
$1$ |
$4$ |
$2$ |
$0$ |
$10221120$ |
$3.055836$ |
$-1680914269/32768$ |
$1.02322$ |
$5.29605$ |
$[1, 0, 0, -19646169, -34078469959]$ |
\(y^2+xy=x^3-19646169x-34078469959\) |
3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.1, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$ |
$[]$ |
122018.bf2 |
122018bi1 |
122018.bf |
122018bi |
$2$ |
$5$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{3} \cdot 13^{9} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3, 5$ |
3.6.0.1, 5.6.0.1 |
3Ns, 5B |
$29640$ |
$576$ |
$17$ |
$1$ |
$4$ |
$2$ |
$0$ |
$2044224$ |
$2.251118$ |
$1331/8$ |
$0.93577$ |
$4.28487$ |
$[1, 0, 0, 181756, 91389752]$ |
\(y^2+xy=x^3+181756x+91389752\) |
3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.2, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$ |
$[]$ |
122018.bg1 |
122018bf2 |
122018.bg |
122018bf |
$2$ |
$5$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2 \cdot 13^{6} \cdot 19^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$9880$ |
$48$ |
$1$ |
$25.57178720$ |
$1$ |
|
$0$ |
$8424000$ |
$2.772480$ |
$-37966934881/4952198$ |
$0.97714$ |
$4.91974$ |
$[1, 0, 0, -4271901, 3761630183]$ |
\(y^2+xy=x^3-4271901x+3761630183\) |
5.12.0.a.2, 152.2.0.?, 520.24.0.?, 760.24.1.?, 1235.24.0.?, $\ldots$ |
$[(93925451582443/78982, 898467186562084215257/78982)]$ |
122018.bg2 |
122018bf1 |
122018.bg |
122018bf |
$2$ |
$5$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{5} \cdot 13^{6} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$9880$ |
$48$ |
$1$ |
$5.114357441$ |
$1$ |
|
$2$ |
$1684800$ |
$1.967760$ |
$-1/608$ |
$1.37833$ |
$4.00628$ |
$[1, 0, 0, -1271, -17877367]$ |
\(y^2+xy=x^3-1271x-17877367\) |
5.12.0.a.1, 152.2.0.?, 520.24.0.?, 760.24.1.?, 1235.24.0.?, $\ldots$ |
$[(15002, 1829989)]$ |
122018.bh1 |
122018x1 |
122018.bh |
122018x |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{14} \cdot 13^{7} \cdot 19^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1270080$ |
$1.974970$ |
$309512375/212992$ |
$1.10477$ |
$3.98892$ |
$[1, 1, 1, 120747, -6972997]$ |
\(y^2+xy+y=x^3+x^2+120747x-6972997\) |
52.2.0.a.1 |
$[]$ |
122018.bi1 |
122018bh2 |
122018.bi |
122018bh |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2 \cdot 13^{13} \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$13832$ |
$96$ |
$2$ |
$47.31109558$ |
$1$ |
|
$0$ |
$15410304$ |
$3.044487$ |
$-1064019559329/125497034$ |
$1.06269$ |
$5.20281$ |
$[1, -1, 1, -12975852, 19742513353]$ |
\(y^2+xy+y=x^3-x^2-12975852x+19742513353\) |
7.24.0.a.2, 104.2.0.?, 728.48.2.?, 1064.48.0.?, 1729.48.0.?, $\ldots$ |
$[(6213759744106810834837/1306456044, 317100996179713990145327057797057/1306456044)]$ |
122018.bi2 |
122018bh1 |
122018.bi |
122018bh |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{7} \cdot 13^{7} \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.1 |
7B.6.1 |
$13832$ |
$96$ |
$2$ |
$6.758727940$ |
$1$ |
|
$0$ |
$2201472$ |
$2.071533$ |
$-2146689/1664$ |
$0.96784$ |
$4.13986$ |
$[1, -1, 1, -163962, -39044807]$ |
\(y^2+xy+y=x^3-x^2-163962x-39044807\) |
7.24.0.a.1, 104.2.0.?, 728.48.2.?, 1064.48.0.?, 1729.48.0.?, $\ldots$ |
$[(27367/3, 4442195/3)]$ |