Learn more

Refine search


Results (1-50 of 51 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
122018.a1 122018.a \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -3732988, 2777908498]$ \(y^2+xy=x^3-x^2-3732988x+2777908498\) 104.2.0.?
122018.b1 122018.b \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -14650, 9480628]$ \(y^2+xy=x^3-x^2-14650x+9480628\) 8.2.0.a.1
122018.c1 122018.c \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 43589659, 48176502480]$ \(y^2+xy+y=x^3+43589659x+48176502480\) 52.2.0.a.1
122018.d1 122018.d \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -17697, 961508]$ \(y^2+xy+y=x^3-17697x+961508\) 4.2.0.a.1, 104.4.0.?
122018.e1 122018.e \( 2 \cdot 13^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $8.220705636$ $[1, 1, 0, -6170219, 54792825469]$ \(y^2+xy=x^3+x^2-6170219x+54792825469\) 104.2.0.?
122018.f1 122018.f \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -5217540, 36896684752]$ \(y^2+xy=x^3+x^2-5217540x+36896684752\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 152.2.0.?, 171.36.0.?, $\ldots$
122018.f2 122018.f \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -946910, -355166612]$ \(y^2+xy=x^3+x^2-946910x-355166612\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 152.2.0.?, 171.36.0.?, $\ldots$
122018.f3 122018.f \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 578315, -1347844051]$ \(y^2+xy=x^3+x^2+578315x-1347844051\) 3.12.0.a.1, 9.36.0.b.1, 152.2.0.?, 171.108.4.?, 312.24.0.?, $\ldots$
122018.g1 122018.g \( 2 \cdot 13^{2} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $4.489323978$ $[1, 1, 0, -15720, 753472]$ \(y^2+xy=x^3+x^2-15720x+753472\) 3.4.0.a.1, 8.2.0.a.1, 9.12.0.b.1, 24.8.0.a.1, 72.24.0.?, $\ldots$
122018.g2 122018.g \( 2 \cdot 13^{2} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $4.489323978$ $[1, 1, 0, 335, 5309]$ \(y^2+xy=x^3+x^2+335x+5309\) 3.4.0.a.1, 8.2.0.a.1, 9.12.0.b.1, 24.8.0.a.1, 72.24.0.?, $\ldots$
122018.h1 122018.h \( 2 \cdot 13^{2} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $4.926201124$ $[1, 1, 0, -28034906, 57122632468]$ \(y^2+xy=x^3+x^2-28034906x+57122632468\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 312.8.0.?, $\ldots$
122018.h2 122018.h \( 2 \cdot 13^{2} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $4.926201124$ $[1, 1, 0, -275811, 111003157]$ \(y^2+xy=x^3+x^2-275811x+111003157\) 3.12.0.a.1, 104.2.0.?, 117.36.0.?, 312.24.1.?, 456.24.0.?, $\ldots$
122018.h3 122018.h \( 2 \cdot 13^{2} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $4.926201124$ $[1, 1, 0, 29234, -3144682]$ \(y^2+xy=x^3+x^2+29234x-3144682\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 312.8.0.?, $\ldots$
122018.i1 122018.i \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -33916, 1992576]$ \(y^2+xy=x^3-x^2-33916x+1992576\) 2.2.0.a.1, 494.6.0.?, 988.12.0.?
122018.j1 122018.j \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -12579293, -17152694649]$ \(y^2+xy=x^3-x^2-12579293x-17152694649\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.6, 52.12.0-4.c.1.1, 104.24.0.?, $\ldots$
122018.j2 122018.j \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -8918753, 10166891515]$ \(y^2+xy=x^3-x^2-8918753x+10166891515\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.6, 76.12.0.?, 104.24.0.?, $\ldots$
122018.j3 122018.j \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -987583, -119835975]$ \(y^2+xy=x^3-x^2-987583x-119835975\) 2.6.0.a.1, 8.12.0-2.a.1.2, 52.12.0-2.a.1.1, 76.12.0.?, 104.24.0.?, $\ldots$
122018.j4 122018.j \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 232597, -14656459]$ \(y^2+xy=x^3-x^2+232597x-14656459\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.6, 52.12.0-4.c.1.2, 76.12.0.?, $\ldots$
122018.k1 122018.k \( 2 \cdot 13^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $3.978670120$ $[1, -1, 0, -396508930, 3039075894804]$ \(y^2+xy=x^3-x^2-396508930x+3039075894804\) 2.2.0.a.1, 4.4.0-2.a.1.1, 494.6.0.?, 988.12.0.?
122018.l1 122018.l \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -23743940, 44554797392]$ \(y^2+xy=x^3-x^2-23743940x+44554797392\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.1, 76.16.0.?, 91.24.0.?, $\ldots$
122018.l2 122018.l \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 49570, -18378008]$ \(y^2+xy=x^3-x^2+49570x-18378008\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 76.16.0.?, 91.24.0.?, $\ldots$
122018.m1 122018.m \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -6499, -200043]$ \(y^2+xy=x^3-x^2-6499x-200043\) 2.2.0.a.1, 494.6.0.?, 988.12.0.?
122018.n1 122018.n \( 2 \cdot 13^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $2.995411086$ $[1, -1, 0, -72448, -6176208]$ \(y^2+xy=x^3-x^2-72448x-6176208\) 2.2.0.a.1, 4.4.0-2.a.1.1, 494.6.0.?, 988.12.0.?
122018.o1 122018.o \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -6299394053, -192440940653648]$ \(y^2+xy+y=x^3-6299394053x-192440940653648\) 8.2.0.a.1
122018.p1 122018.p \( 2 \cdot 13^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $5.257360792$ $[1, 0, 1, -116250, -15520308]$ \(y^2+xy+y=x^3-116250x-15520308\) 3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.1, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$
122018.p2 122018.p \( 2 \cdot 13^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.051472158$ $[1, 0, 1, 1075, 41680]$ \(y^2+xy+y=x^3+1075x+41680\) 3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.2, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$
122018.q1 122018.q \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 761341, -116391650]$ \(y^2+xy+y=x^3+761341x-116391650\) 104.2.0.?
122018.r1 122018.r \( 2 \cdot 13^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $27.31289755$ $[1, -1, 0, -72448, 170017784]$ \(y^2+xy=x^3-x^2-72448x+170017784\) 3.3.0.a.1, 24.6.0.m.1, 57.6.0.a.1, 152.2.0.?, 456.12.1.?
122018.s1 122018.s \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -101347, -12402337]$ \(y^2+xy=x^3-x^2-101347x-12402337\) 8.2.0.a.1
122018.t1 122018.t \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -201, -24735]$ \(y^2+xy+y=x^3-x^2-201x-24735\) 3.3.0.a.1, 24.6.0.m.1, 57.6.0.a.1, 152.2.0.?, 456.12.1.?
122018.u1 122018.u \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -36586335, 85250561049]$ \(y^2+xy+y=x^3-x^2-36586335x+85250561049\) 8.2.0.a.1
122018.v1 122018.v \( 2 \cdot 13^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.988215544$ $[1, 0, 0, -2990712, 2115424336]$ \(y^2+xy=x^3-2990712x+2115424336\) 4.2.0.a.1, 8.4.0-4.a.1.1
122018.w1 122018.w \( 2 \cdot 13^{2} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $0.786704031$ $[1, 1, 1, -17449845, 28049357851]$ \(y^2+xy+y=x^3+x^2-17449845x+28049357851\) 8.2.0.a.1
122018.x1 122018.x \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -1042767099, 120385051390729]$ \(y^2+xy+y=x^3+x^2-1042767099x+120385051390729\) 104.2.0.?
122018.y1 122018.y \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -12243744, -13605860173]$ \(y^2+xy+y=x^3-x^2-12243744x-13605860173\) 2.2.0.a.1, 52.4.0-2.a.1.1, 494.6.0.?, 988.12.0.?
122018.z1 122018.z \( 2 \cdot 13^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $2.243675637$ $[1, -1, 1, -1098363, -442789525]$ \(y^2+xy+y=x^3-x^2-1098363x-442789525\) 2.2.0.a.1, 76.4.0.?, 494.6.0.?, 988.12.0.?
122018.ba1 122018.ba \( 2 \cdot 13^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.457954331$ $[1, -1, 1, -140497, 20312257]$ \(y^2+xy+y=x^3-x^2-140497x+20312257\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.1, 91.24.0.?, 364.384.21.?, $\ldots$
122018.ba2 122018.ba \( 2 \cdot 13^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $3.205680318$ $[1, -1, 1, 293, -8433]$ \(y^2+xy+y=x^3-x^2+293x-8433\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 364.384.21.?, $\ldots$
122018.bb1 122018.bb \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -2346207, 1383825863]$ \(y^2+xy+y=x^3-x^2-2346207x+1383825863\) 2.2.0.a.1, 52.4.0-2.a.1.1, 494.6.0.?, 988.12.0.?
122018.bc1 122018.bc \( 2 \cdot 13^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.584254428$ $[1, -1, 1, -201, 953]$ \(y^2+xy+y=x^3-x^2-201x+953\) 2.2.0.a.1, 76.4.0.?, 494.6.0.?, 988.12.0.?
122018.bd1 122018.bd \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -5675108, -5213464816]$ \(y^2+xy=x^3-5675108x-5213464816\) 3.4.0.a.1, 8.2.0.a.1, 9.12.0.b.1, 24.8.0.a.1, 39.8.0-3.a.1.2, $\ldots$
122018.bd2 122018.bd \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, 120747, -35447959]$ \(y^2+xy=x^3+120747x-35447959\) 3.4.0.a.1, 8.2.0.a.1, 9.12.0.b.1, 24.8.0.a.1, 39.8.0-3.a.1.1, $\ldots$
122018.be1 122018.be \( 2 \cdot 13^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $5.956320583$ $[1, 0, 0, -61071280, -192774653696]$ \(y^2+xy=x^3-61071280x-192774653696\) 104.2.0.?
122018.bf1 122018.bf \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -19646169, -34078469959]$ \(y^2+xy=x^3-19646169x-34078469959\) 3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.1, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$
122018.bf2 122018.bf \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, 181756, 91389752]$ \(y^2+xy=x^3+181756x+91389752\) 3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.2, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$
122018.bg1 122018.bg \( 2 \cdot 13^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $25.57178720$ $[1, 0, 0, -4271901, 3761630183]$ \(y^2+xy=x^3-4271901x+3761630183\) 5.12.0.a.2, 152.2.0.?, 520.24.0.?, 760.24.1.?, 1235.24.0.?, $\ldots$
122018.bg2 122018.bg \( 2 \cdot 13^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $5.114357441$ $[1, 0, 0, -1271, -17877367]$ \(y^2+xy=x^3-1271x-17877367\) 5.12.0.a.1, 152.2.0.?, 520.24.0.?, 760.24.1.?, 1235.24.0.?, $\ldots$
122018.bh1 122018.bh \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, 120747, -6972997]$ \(y^2+xy+y=x^3+x^2+120747x-6972997\) 52.2.0.a.1
122018.bi1 122018.bi \( 2 \cdot 13^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $47.31109558$ $[1, -1, 1, -12975852, 19742513353]$ \(y^2+xy+y=x^3-x^2-12975852x+19742513353\) 7.24.0.a.2, 104.2.0.?, 728.48.2.?, 1064.48.0.?, 1729.48.0.?, $\ldots$
122018.bi2 122018.bi \( 2 \cdot 13^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $6.758727940$ $[1, -1, 1, -163962, -39044807]$ \(y^2+xy+y=x^3-x^2-163962x-39044807\) 7.24.0.a.1, 104.2.0.?, 728.48.2.?, 1064.48.0.?, 1729.48.0.?, $\ldots$
Next   displayed columns for results