Learn more

Refine search


Results (1-50 of 51 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-mm images
122018.a1 122018.a 2132192 2 \cdot 13^{2} \cdot 19^{2} 00 trivial\mathsf{trivial} 11 [1,1,0,3732988,2777908498][1, -1, 0, -3732988, 2777908498] y2+xy=x3x23732988x+2777908498y^2+xy=x^3-x^2-3732988x+2777908498 104.2.0.?
122018.b1 122018.b 2132192 2 \cdot 13^{2} \cdot 19^{2} 00 trivial\mathsf{trivial} 11 [1,1,0,14650,9480628][1, -1, 0, -14650, 9480628] y2+xy=x3x214650x+9480628y^2+xy=x^3-x^2-14650x+9480628 8.2.0.a.1
122018.c1 122018.c 2132192 2 \cdot 13^{2} \cdot 19^{2} 00 trivial\mathsf{trivial} 11 [1,0,1,43589659,48176502480][1, 0, 1, 43589659, 48176502480] y2+xy+y=x3+43589659x+48176502480y^2+xy+y=x^3+43589659x+48176502480 52.2.0.a.1
122018.d1 122018.d 2132192 2 \cdot 13^{2} \cdot 19^{2} 00 trivial\mathsf{trivial} 11 [1,0,1,17697,961508][1, 0, 1, -17697, 961508] y2+xy+y=x317697x+961508y^2+xy+y=x^3-17697x+961508 4.2.0.a.1, 104.4.0.?
122018.e1 122018.e 2132192 2 \cdot 13^{2} \cdot 19^{2} 11 trivial\mathsf{trivial} 8.2207056368.220705636 [1,1,0,6170219,54792825469][1, 1, 0, -6170219, 54792825469] y2+xy=x3+x26170219x+54792825469y^2+xy=x^3+x^2-6170219x+54792825469 104.2.0.?
122018.f1 122018.f 2132192 2 \cdot 13^{2} \cdot 19^{2} 00 trivial\mathsf{trivial} 11 [1,1,0,5217540,36896684752][1, 1, 0, -5217540, 36896684752] y2+xy=x3+x25217540x+36896684752y^2+xy=x^3+x^2-5217540x+36896684752 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 152.2.0.?, 171.36.0.?, \ldots
122018.f2 122018.f 2132192 2 \cdot 13^{2} \cdot 19^{2} 00 trivial\mathsf{trivial} 11 [1,1,0,946910,355166612][1, 1, 0, -946910, -355166612] y2+xy=x3+x2946910x355166612y^2+xy=x^3+x^2-946910x-355166612 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 152.2.0.?, 171.36.0.?, \ldots
122018.f3 122018.f 2132192 2 \cdot 13^{2} \cdot 19^{2} 00 trivial\mathsf{trivial} 11 [1,1,0,578315,1347844051][1, 1, 0, 578315, -1347844051] y2+xy=x3+x2+578315x1347844051y^2+xy=x^3+x^2+578315x-1347844051 3.12.0.a.1, 9.36.0.b.1, 152.2.0.?, 171.108.4.?, 312.24.0.?, \ldots
122018.g1 122018.g 2132192 2 \cdot 13^{2} \cdot 19^{2} 22 trivial\mathsf{trivial} 4.4893239784.489323978 [1,1,0,15720,753472][1, 1, 0, -15720, 753472] y2+xy=x3+x215720x+753472y^2+xy=x^3+x^2-15720x+753472 3.4.0.a.1, 8.2.0.a.1, 9.12.0.b.1, 24.8.0.a.1, 72.24.0.?, \ldots
122018.g2 122018.g 2132192 2 \cdot 13^{2} \cdot 19^{2} 22 trivial\mathsf{trivial} 4.4893239784.489323978 [1,1,0,335,5309][1, 1, 0, 335, 5309] y2+xy=x3+x2+335x+5309y^2+xy=x^3+x^2+335x+5309 3.4.0.a.1, 8.2.0.a.1, 9.12.0.b.1, 24.8.0.a.1, 72.24.0.?, \ldots
122018.h1 122018.h 2132192 2 \cdot 13^{2} \cdot 19^{2} 22 trivial\mathsf{trivial} 4.9262011244.926201124 [1,1,0,28034906,57122632468][1, 1, 0, -28034906, 57122632468] y2+xy=x3+x228034906x+57122632468y^2+xy=x^3+x^2-28034906x+57122632468 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 312.8.0.?, \ldots
122018.h2 122018.h 2132192 2 \cdot 13^{2} \cdot 19^{2} 22 trivial\mathsf{trivial} 4.9262011244.926201124 [1,1,0,275811,111003157][1, 1, 0, -275811, 111003157] y2+xy=x3+x2275811x+111003157y^2+xy=x^3+x^2-275811x+111003157 3.12.0.a.1, 104.2.0.?, 117.36.0.?, 312.24.1.?, 456.24.0.?, \ldots
122018.h3 122018.h 2132192 2 \cdot 13^{2} \cdot 19^{2} 22 trivial\mathsf{trivial} 4.9262011244.926201124 [1,1,0,29234,3144682][1, 1, 0, 29234, -3144682] y2+xy=x3+x2+29234x3144682y^2+xy=x^3+x^2+29234x-3144682 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 312.8.0.?, \ldots
122018.i1 122018.i 2132192 2 \cdot 13^{2} \cdot 19^{2} 00 trivial\mathsf{trivial} 11 [1,1,0,33916,1992576][1, -1, 0, -33916, 1992576] y2+xy=x3x233916x+1992576y^2+xy=x^3-x^2-33916x+1992576 2.2.0.a.1, 494.6.0.?, 988.12.0.?
122018.j1 122018.j 2132192 2 \cdot 13^{2} \cdot 19^{2} 00 Z/2Z\Z/2\Z 11 [1,1,0,12579293,17152694649][1, -1, 0, -12579293, -17152694649] y2+xy=x3x212579293x17152694649y^2+xy=x^3-x^2-12579293x-17152694649 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.6, 52.12.0-4.c.1.1, 104.24.0.?, \ldots
122018.j2 122018.j 2132192 2 \cdot 13^{2} \cdot 19^{2} 00 Z/2Z\Z/2\Z 11 [1,1,0,8918753,10166891515][1, -1, 0, -8918753, 10166891515] y2+xy=x3x28918753x+10166891515y^2+xy=x^3-x^2-8918753x+10166891515 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.6, 76.12.0.?, 104.24.0.?, \ldots
122018.j3 122018.j 2132192 2 \cdot 13^{2} \cdot 19^{2} 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,1,0,987583,119835975][1, -1, 0, -987583, -119835975] y2+xy=x3x2987583x119835975y^2+xy=x^3-x^2-987583x-119835975 2.6.0.a.1, 8.12.0-2.a.1.2, 52.12.0-2.a.1.1, 76.12.0.?, 104.24.0.?, \ldots
122018.j4 122018.j 2132192 2 \cdot 13^{2} \cdot 19^{2} 00 Z/2Z\Z/2\Z 11 [1,1,0,232597,14656459][1, -1, 0, 232597, -14656459] y2+xy=x3x2+232597x14656459y^2+xy=x^3-x^2+232597x-14656459 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.6, 52.12.0-4.c.1.2, 76.12.0.?, \ldots
122018.k1 122018.k 2132192 2 \cdot 13^{2} \cdot 19^{2} 11 trivial\mathsf{trivial} 3.9786701203.978670120 [1,1,0,396508930,3039075894804][1, -1, 0, -396508930, 3039075894804] y2+xy=x3x2396508930x+3039075894804y^2+xy=x^3-x^2-396508930x+3039075894804 2.2.0.a.1, 4.4.0-2.a.1.1, 494.6.0.?, 988.12.0.?
122018.l1 122018.l 2132192 2 \cdot 13^{2} \cdot 19^{2} 00 trivial\mathsf{trivial} 11 [1,1,0,23743940,44554797392][1, -1, 0, -23743940, 44554797392] y2+xy=x3x223743940x+44554797392y^2+xy=x^3-x^2-23743940x+44554797392 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.1, 76.16.0.?, 91.24.0.?, \ldots
122018.l2 122018.l 2132192 2 \cdot 13^{2} \cdot 19^{2} 00 trivial\mathsf{trivial} 11 [1,1,0,49570,18378008][1, -1, 0, 49570, -18378008] y2+xy=x3x2+49570x18378008y^2+xy=x^3-x^2+49570x-18378008 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 76.16.0.?, 91.24.0.?, \ldots
122018.m1 122018.m 2132192 2 \cdot 13^{2} \cdot 19^{2} 00 trivial\mathsf{trivial} 11 [1,1,0,6499,200043][1, -1, 0, -6499, -200043] y2+xy=x3x26499x200043y^2+xy=x^3-x^2-6499x-200043 2.2.0.a.1, 494.6.0.?, 988.12.0.?
122018.n1 122018.n 2132192 2 \cdot 13^{2} \cdot 19^{2} 11 trivial\mathsf{trivial} 2.9954110862.995411086 [1,1,0,72448,6176208][1, -1, 0, -72448, -6176208] y2+xy=x3x272448x6176208y^2+xy=x^3-x^2-72448x-6176208 2.2.0.a.1, 4.4.0-2.a.1.1, 494.6.0.?, 988.12.0.?
122018.o1 122018.o 2132192 2 \cdot 13^{2} \cdot 19^{2} 00 trivial\mathsf{trivial} 11 [1,0,1,6299394053,192440940653648][1, 0, 1, -6299394053, -192440940653648] y2+xy+y=x36299394053x192440940653648y^2+xy+y=x^3-6299394053x-192440940653648 8.2.0.a.1
122018.p1 122018.p 2132192 2 \cdot 13^{2} \cdot 19^{2} 11 trivial\mathsf{trivial} 5.2573607925.257360792 [1,0,1,116250,15520308][1, 0, 1, -116250, -15520308] y2+xy+y=x3116250x15520308y^2+xy+y=x^3-116250x-15520308 3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.1, 24.12.0.bx.1, 39.12.0.a.1, \ldots
122018.p2 122018.p 2132192 2 \cdot 13^{2} \cdot 19^{2} 11 trivial\mathsf{trivial} 1.0514721581.051472158 [1,0,1,1075,41680][1, 0, 1, 1075, 41680] y2+xy+y=x3+1075x+41680y^2+xy+y=x^3+1075x+41680 3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.2, 24.12.0.bx.1, 39.12.0.a.1, \ldots
122018.q1 122018.q 2132192 2 \cdot 13^{2} \cdot 19^{2} 00 trivial\mathsf{trivial} 11 [1,0,1,761341,116391650][1, 0, 1, 761341, -116391650] y2+xy+y=x3+761341x116391650y^2+xy+y=x^3+761341x-116391650 104.2.0.?
122018.r1 122018.r 2132192 2 \cdot 13^{2} \cdot 19^{2} 11 trivial\mathsf{trivial} 27.3128975527.31289755 [1,1,0,72448,170017784][1, -1, 0, -72448, 170017784] y2+xy=x3x272448x+170017784y^2+xy=x^3-x^2-72448x+170017784 3.3.0.a.1, 24.6.0.m.1, 57.6.0.a.1, 152.2.0.?, 456.12.1.?
122018.s1 122018.s 2132192 2 \cdot 13^{2} \cdot 19^{2} 00 trivial\mathsf{trivial} 11 [1,1,0,101347,12402337][1, -1, 0, -101347, -12402337] y2+xy=x3x2101347x12402337y^2+xy=x^3-x^2-101347x-12402337 8.2.0.a.1
122018.t1 122018.t 2132192 2 \cdot 13^{2} \cdot 19^{2} 00 trivial\mathsf{trivial} 11 [1,1,1,201,24735][1, -1, 1, -201, -24735] y2+xy+y=x3x2201x24735y^2+xy+y=x^3-x^2-201x-24735 3.3.0.a.1, 24.6.0.m.1, 57.6.0.a.1, 152.2.0.?, 456.12.1.?
122018.u1 122018.u 2132192 2 \cdot 13^{2} \cdot 19^{2} 00 trivial\mathsf{trivial} 11 [1,1,1,36586335,85250561049][1, -1, 1, -36586335, 85250561049] y2+xy+y=x3x236586335x+85250561049y^2+xy+y=x^3-x^2-36586335x+85250561049 8.2.0.a.1
122018.v1 122018.v 2132192 2 \cdot 13^{2} \cdot 19^{2} 11 trivial\mathsf{trivial} 0.9882155440.988215544 [1,0,0,2990712,2115424336][1, 0, 0, -2990712, 2115424336] y2+xy=x32990712x+2115424336y^2+xy=x^3-2990712x+2115424336 4.2.0.a.1, 8.4.0-4.a.1.1
122018.w1 122018.w 2132192 2 \cdot 13^{2} \cdot 19^{2} 22 trivial\mathsf{trivial} 0.7867040310.786704031 [1,1,1,17449845,28049357851][1, 1, 1, -17449845, 28049357851] y2+xy+y=x3+x217449845x+28049357851y^2+xy+y=x^3+x^2-17449845x+28049357851 8.2.0.a.1
122018.x1 122018.x 2132192 2 \cdot 13^{2} \cdot 19^{2} 00 trivial\mathsf{trivial} 11 [1,1,1,1042767099,120385051390729][1, 1, 1, -1042767099, 120385051390729] y2+xy+y=x3+x21042767099x+120385051390729y^2+xy+y=x^3+x^2-1042767099x+120385051390729 104.2.0.?
122018.y1 122018.y 2132192 2 \cdot 13^{2} \cdot 19^{2} 00 trivial\mathsf{trivial} 11 [1,1,1,12243744,13605860173][1, -1, 1, -12243744, -13605860173] y2+xy+y=x3x212243744x13605860173y^2+xy+y=x^3-x^2-12243744x-13605860173 2.2.0.a.1, 52.4.0-2.a.1.1, 494.6.0.?, 988.12.0.?
122018.z1 122018.z 2132192 2 \cdot 13^{2} \cdot 19^{2} 11 trivial\mathsf{trivial} 2.2436756372.243675637 [1,1,1,1098363,442789525][1, -1, 1, -1098363, -442789525] y2+xy+y=x3x21098363x442789525y^2+xy+y=x^3-x^2-1098363x-442789525 2.2.0.a.1, 76.4.0.?, 494.6.0.?, 988.12.0.?
122018.ba1 122018.ba 2132192 2 \cdot 13^{2} \cdot 19^{2} 11 trivial\mathsf{trivial} 0.4579543310.457954331 [1,1,1,140497,20312257][1, -1, 1, -140497, 20312257] y2+xy+y=x3x2140497x+20312257y^2+xy+y=x^3-x^2-140497x+20312257 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.1, 91.24.0.?, 364.384.21.?, \ldots
122018.ba2 122018.ba 2132192 2 \cdot 13^{2} \cdot 19^{2} 11 trivial\mathsf{trivial} 3.2056803183.205680318 [1,1,1,293,8433][1, -1, 1, 293, -8433] y2+xy+y=x3x2+293x8433y^2+xy+y=x^3-x^2+293x-8433 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 364.384.21.?, \ldots
122018.bb1 122018.bb 2132192 2 \cdot 13^{2} \cdot 19^{2} 00 trivial\mathsf{trivial} 11 [1,1,1,2346207,1383825863][1, -1, 1, -2346207, 1383825863] y2+xy+y=x3x22346207x+1383825863y^2+xy+y=x^3-x^2-2346207x+1383825863 2.2.0.a.1, 52.4.0-2.a.1.1, 494.6.0.?, 988.12.0.?
122018.bc1 122018.bc 2132192 2 \cdot 13^{2} \cdot 19^{2} 11 trivial\mathsf{trivial} 0.5842544280.584254428 [1,1,1,201,953][1, -1, 1, -201, 953] y2+xy+y=x3x2201x+953y^2+xy+y=x^3-x^2-201x+953 2.2.0.a.1, 76.4.0.?, 494.6.0.?, 988.12.0.?
122018.bd1 122018.bd 2132192 2 \cdot 13^{2} \cdot 19^{2} 00 trivial\mathsf{trivial} 11 [1,0,0,5675108,5213464816][1, 0, 0, -5675108, -5213464816] y2+xy=x35675108x5213464816y^2+xy=x^3-5675108x-5213464816 3.4.0.a.1, 8.2.0.a.1, 9.12.0.b.1, 24.8.0.a.1, 39.8.0-3.a.1.2, \ldots
122018.bd2 122018.bd 2132192 2 \cdot 13^{2} \cdot 19^{2} 00 trivial\mathsf{trivial} 11 [1,0,0,120747,35447959][1, 0, 0, 120747, -35447959] y2+xy=x3+120747x35447959y^2+xy=x^3+120747x-35447959 3.4.0.a.1, 8.2.0.a.1, 9.12.0.b.1, 24.8.0.a.1, 39.8.0-3.a.1.1, \ldots
122018.be1 122018.be 2132192 2 \cdot 13^{2} \cdot 19^{2} 11 trivial\mathsf{trivial} 5.9563205835.956320583 [1,0,0,61071280,192774653696][1, 0, 0, -61071280, -192774653696] y2+xy=x361071280x192774653696y^2+xy=x^3-61071280x-192774653696 104.2.0.?
122018.bf1 122018.bf 2132192 2 \cdot 13^{2} \cdot 19^{2} 00 trivial\mathsf{trivial} 11 [1,0,0,19646169,34078469959][1, 0, 0, -19646169, -34078469959] y2+xy=x319646169x34078469959y^2+xy=x^3-19646169x-34078469959 3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.1, 24.12.0.bx.1, 39.12.0.a.1, \ldots
122018.bf2 122018.bf 2132192 2 \cdot 13^{2} \cdot 19^{2} 00 trivial\mathsf{trivial} 11 [1,0,0,181756,91389752][1, 0, 0, 181756, 91389752] y2+xy=x3+181756x+91389752y^2+xy=x^3+181756x+91389752 3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.2, 24.12.0.bx.1, 39.12.0.a.1, \ldots
122018.bg1 122018.bg 2132192 2 \cdot 13^{2} \cdot 19^{2} 11 trivial\mathsf{trivial} 25.5717872025.57178720 [1,0,0,4271901,3761630183][1, 0, 0, -4271901, 3761630183] y2+xy=x34271901x+3761630183y^2+xy=x^3-4271901x+3761630183 5.12.0.a.2, 152.2.0.?, 520.24.0.?, 760.24.1.?, 1235.24.0.?, \ldots
122018.bg2 122018.bg 2132192 2 \cdot 13^{2} \cdot 19^{2} 11 trivial\mathsf{trivial} 5.1143574415.114357441 [1,0,0,1271,17877367][1, 0, 0, -1271, -17877367] y2+xy=x31271x17877367y^2+xy=x^3-1271x-17877367 5.12.0.a.1, 152.2.0.?, 520.24.0.?, 760.24.1.?, 1235.24.0.?, \ldots
122018.bh1 122018.bh 2132192 2 \cdot 13^{2} \cdot 19^{2} 00 trivial\mathsf{trivial} 11 [1,1,1,120747,6972997][1, 1, 1, 120747, -6972997] y2+xy+y=x3+x2+120747x6972997y^2+xy+y=x^3+x^2+120747x-6972997 52.2.0.a.1
122018.bi1 122018.bi 2132192 2 \cdot 13^{2} \cdot 19^{2} 11 trivial\mathsf{trivial} 47.3110955847.31109558 [1,1,1,12975852,19742513353][1, -1, 1, -12975852, 19742513353] y2+xy+y=x3x212975852x+19742513353y^2+xy+y=x^3-x^2-12975852x+19742513353 7.24.0.a.2, 104.2.0.?, 728.48.2.?, 1064.48.0.?, 1729.48.0.?, \ldots
122018.bi2 122018.bi 2132192 2 \cdot 13^{2} \cdot 19^{2} 11 trivial\mathsf{trivial} 6.7587279406.758727940 [1,1,1,163962,39044807][1, -1, 1, -163962, -39044807] y2+xy+y=x3x2163962x39044807y^2+xy+y=x^3-x^2-163962x-39044807 7.24.0.a.1, 104.2.0.?, 728.48.2.?, 1064.48.0.?, 1729.48.0.?, \ldots
Next   displayed columns for results