Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
137904.a1 |
137904y2 |
137904.a |
137904y |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( 2^{20} \cdot 3^{6} \cdot 13^{3} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2652$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1327104$ |
$1.817574$ |
$275602131611533/53934336$ |
$0.98912$ |
$4.16269$ |
$[0, -1, 0, -282000, -57536064]$ |
\(y^2=x^3-x^2-282000x-57536064\) |
2.3.0.a.1, 26.6.0.b.1, 204.6.0.?, 2652.12.0.? |
$[]$ |
137904.a2 |
137904y1 |
137904.a |
137904y |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( - 2^{28} \cdot 3^{3} \cdot 13^{3} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2652$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$663552$ |
$1.470999$ |
$-48109395853/30081024$ |
$0.94615$ |
$3.49340$ |
$[0, -1, 0, -15760, -1093184]$ |
\(y^2=x^3-x^2-15760x-1093184\) |
2.3.0.a.1, 52.6.0.c.1, 204.6.0.?, 1326.6.0.?, 2652.12.0.? |
$[]$ |
137904.b1 |
137904cu2 |
137904.b |
137904cu |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( 2^{8} \cdot 3^{2} \cdot 13^{9} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.2 |
2B |
$5304$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$3194880$ |
$2.202785$ |
$1298923792/751689$ |
$1.22475$ |
$4.19243$ |
$[0, -1, 0, -317100, 243216]$ |
\(y^2=x^3-x^2-317100x+243216\) |
2.3.0.a.1, 4.6.0.d.1, 26.6.0.b.1, 52.24.0-52.i.1.2, 408.12.0.?, $\ldots$ |
$[]$ |
137904.b2 |
137904cu1 |
137904.b |
137904cu |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( 2^{4} \cdot 3^{4} \cdot 13^{9} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.2 |
2B |
$5304$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$1597440$ |
$1.856211$ |
$6774679552/23409$ |
$0.91713$ |
$4.09771$ |
$[0, -1, 0, -218235, 39196026]$ |
\(y^2=x^3-x^2-218235x+39196026\) |
2.3.0.a.1, 4.6.0.d.1, 26.6.0.b.1, 52.24.0-52.i.1.1, 408.12.0.?, $\ldots$ |
$[]$ |
137904.c1 |
137904z2 |
137904.c |
137904z |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( - 2^{12} \cdot 3 \cdot 13^{6} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2652$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1010880$ |
$1.716398$ |
$-23100424192/14739$ |
$1.03897$ |
$4.01981$ |
$[0, -1, 0, -160437, 24801789]$ |
\(y^2=x^3-x^2-160437x+24801789\) |
3.4.0.a.1, 102.8.0.?, 156.8.0.?, 2652.16.0.? |
$[]$ |
137904.c2 |
137904z1 |
137904.c |
137904z |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( - 2^{12} \cdot 3^{3} \cdot 13^{6} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2652$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$336960$ |
$1.167091$ |
$32768/459$ |
$1.01165$ |
$3.14755$ |
$[0, -1, 0, 1803, 141309]$ |
\(y^2=x^3-x^2+1803x+141309\) |
3.4.0.a.1, 102.8.0.?, 156.8.0.?, 2652.16.0.? |
$[]$ |
137904.d1 |
137904ba2 |
137904.d |
137904ba |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( - 2^{18} \cdot 3 \cdot 13^{8} \cdot 17^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$204$ |
$16$ |
$0$ |
$2.718119783$ |
$1$ |
|
$10$ |
$2695680$ |
$2.267300$ |
$-3754462153/943296$ |
$0.90034$ |
$4.33013$ |
$[0, -1, 0, -484072, 155404144]$ |
\(y^2=x^3-x^2-484072x+155404144\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 102.8.0.?, 204.16.0.? |
$[(-732, 10816), (282, 6422)]$ |
137904.d2 |
137904ba1 |
137904.d |
137904ba |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( - 2^{14} \cdot 3^{3} \cdot 13^{8} \cdot 17 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$204$ |
$16$ |
$0$ |
$2.718119783$ |
$1$ |
|
$10$ |
$898560$ |
$1.717995$ |
$2669927/1836$ |
$0.83954$ |
$3.68715$ |
$[0, -1, 0, 43208, -1514384]$ |
\(y^2=x^3-x^2+43208x-1514384\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 102.8.0.?, 204.16.0.? |
$[(620, 16224), (282, 5746)]$ |
137904.e1 |
137904bb1 |
137904.e |
137904bb |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( - 2^{12} \cdot 3 \cdot 13^{8} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$13.85685003$ |
$1$ |
|
$0$ |
$474240$ |
$1.426968$ |
$-53248/51$ |
$0.69749$ |
$3.43886$ |
$[0, -1, 0, -11717, -791571]$ |
\(y^2=x^3-x^2-11717x-791571\) |
102.2.0.? |
$[(689284/71, 135862043/71)]$ |
137904.f1 |
137904cv3 |
137904.f |
137904cv |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( 2^{11} \cdot 3^{8} \cdot 13^{6} \cdot 17 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.11 |
2B |
$1768$ |
$48$ |
$0$ |
$4.529117879$ |
$1$ |
|
$13$ |
$983040$ |
$1.734779$ |
$22994537186/111537$ |
$1.03807$ |
$3.96076$ |
$[0, -1, 0, -127144, 17419024]$ |
\(y^2=x^3-x^2-127144x+17419024\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 104.24.0.?, 136.24.0.?, $\ldots$ |
$[(48, 3380), (298, 2430)]$ |
137904.f2 |
137904cv2 |
137904.f |
137904cv |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( 2^{10} \cdot 3^{4} \cdot 13^{6} \cdot 17^{2} \) |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.4 |
2Cs |
$1768$ |
$48$ |
$0$ |
$4.529117879$ |
$1$ |
|
$19$ |
$491520$ |
$1.388206$ |
$40873252/23409$ |
$1.13826$ |
$3.36709$ |
$[0, -1, 0, -12224, -48816]$ |
\(y^2=x^3-x^2-12224x-48816\) |
2.6.0.a.1, 8.12.0.b.1, 52.12.0-2.a.1.1, 68.12.0.b.1, 104.24.0.?, $\ldots$ |
$[(-56, 676), (-8, 220)]$ |
137904.f3 |
137904cv1 |
137904.f |
137904cv |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( 2^{8} \cdot 3^{2} \cdot 13^{6} \cdot 17 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.11 |
2B |
$1768$ |
$48$ |
$0$ |
$4.529117879$ |
$1$ |
|
$9$ |
$245760$ |
$1.041632$ |
$61918288/153$ |
$0.87866$ |
$3.28504$ |
$[0, -1, 0, -8844, -316512]$ |
\(y^2=x^3-x^2-8844x-316512\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 34.6.0.a.1, 52.12.0-4.c.1.1, $\ldots$ |
$[(152, 1352), (-52, 8)]$ |
137904.f4 |
137904cv4 |
137904.f |
137904cv |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( - 2^{11} \cdot 3^{2} \cdot 13^{6} \cdot 17^{4} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.16 |
2B |
$1768$ |
$48$ |
$0$ |
$4.529117879$ |
$1$ |
|
$13$ |
$983040$ |
$1.734779$ |
$1285471294/751689$ |
$1.05433$ |
$3.71705$ |
$[0, -1, 0, 48616, -438192]$ |
\(y^2=x^3-x^2+48616x-438192\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.d.1, 52.12.0-4.c.1.2, 104.24.0.?, $\ldots$ |
$[(26, 918), (178, 3718)]$ |
137904.g1 |
137904bc2 |
137904.g |
137904bc |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( 2^{8} \cdot 3^{3} \cdot 13^{9} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$8626176$ |
$2.947731$ |
$31136886750912784/7803$ |
$1.05724$ |
$5.62829$ |
$[0, -1, 0, -91431084, 336533460444]$ |
\(y^2=x^3-x^2-91431084x+336533460444\) |
2.3.0.a.1, 12.6.0.g.1, 52.6.0.c.1, 156.12.0.? |
$[]$ |
137904.g2 |
137904bc1 |
137904.g |
137904bc |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( 2^{4} \cdot 3^{6} \cdot 13^{9} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$4313088$ |
$2.601158$ |
$121672308342784/60886809$ |
$1.10125$ |
$4.92546$ |
$[0, -1, 0, -5715129, 5258437560]$ |
\(y^2=x^3-x^2-5715129x+5258437560\) |
2.3.0.a.1, 12.6.0.g.1, 26.6.0.b.1, 156.12.0.? |
$[]$ |
137904.h1 |
137904bd1 |
137904.h |
137904bd |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( 2^{4} \cdot 3^{4} \cdot 13^{9} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$718848$ |
$1.694670$ |
$67108864/23409$ |
$1.12003$ |
$3.70777$ |
$[0, -1, 0, -46869, -2445912]$ |
\(y^2=x^3-x^2-46869x-2445912\) |
2.3.0.a.1, 26.6.0.b.1, 68.6.0.e.1, 884.12.0.? |
$[]$ |
137904.h2 |
137904bd2 |
137904.h |
137904bd |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{8} \cdot 13^{9} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$1437696$ |
$2.041245$ |
$111485936/111537$ |
$1.16031$ |
$3.98495$ |
$[0, -1, 0, 139876, -17236116]$ |
\(y^2=x^3-x^2+139876x-17236116\) |
2.3.0.a.1, 52.6.0.c.1, 68.6.0.e.1, 884.12.0.? |
$[]$ |
137904.i1 |
137904be2 |
137904.i |
137904be |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( 2^{26} \cdot 3^{14} \cdot 13^{3} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$10838016$ |
$3.094444$ |
$45204035637810785581/6545053349462016$ |
$1.04093$ |
$5.17735$ |
$[0, -1, 0, -15436464, -20208462912]$ |
\(y^2=x^3-x^2-15436464x-20208462912\) |
2.3.0.a.1, 12.6.0.f.1, 26.6.0.b.1, 156.12.0.? |
$[]$ |
137904.i2 |
137904be1 |
137904.i |
137904be |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( - 2^{40} \cdot 3^{7} \cdot 13^{3} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$5419008$ |
$2.747871$ |
$50611530622079699/169662750916608$ |
$1.03810$ |
$4.73561$ |
$[0, -1, 0, 1602896, -1710533696]$ |
\(y^2=x^3-x^2+1602896x-1710533696\) |
2.3.0.a.1, 12.6.0.f.1, 52.6.0.c.1, 78.6.0.?, 156.12.0.? |
$[]$ |
137904.j1 |
137904cw1 |
137904.j |
137904cw |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{9} \cdot 13^{4} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$5.083446884$ |
$1$ |
|
$2$ |
$684288$ |
$1.753647$ |
$-69842532158464/96702579$ |
$1.00236$ |
$4.02935$ |
$[0, -1, 0, -166521, 26241669]$ |
\(y^2=x^3-x^2-166521x+26241669\) |
102.2.0.? |
$[(188, 1243)]$ |
137904.k1 |
137904cx1 |
137904.k |
137904cx |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{9} \cdot 13^{8} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2021760$ |
$2.250542$ |
$-3151503407104/96702579$ |
$0.95916$ |
$4.40437$ |
$[0, -1, 0, -719151, 241117902]$ |
\(y^2=x^3-x^2-719151x+241117902\) |
102.2.0.? |
$[]$ |
137904.l1 |
137904bf1 |
137904.l |
137904bf |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3 \cdot 13^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$3.247088954$ |
$1$ |
|
$2$ |
$98496$ |
$0.770932$ |
$-65536/51$ |
$1.18457$ |
$2.77814$ |
$[0, -1, 0, -901, 16249]$ |
\(y^2=x^3-x^2-901x+16249\) |
102.2.0.? |
$[(-27, 142)]$ |
137904.m1 |
137904bg1 |
137904.m |
137904bg |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{5} \cdot 13^{2} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$40320$ |
$0.272675$ |
$6815744/4131$ |
$1.01480$ |
$2.23163$ |
$[0, -1, 0, 139, -183]$ |
\(y^2=x^3-x^2+139x-183\) |
102.2.0.? |
$[]$ |
137904.n1 |
137904cy2 |
137904.n |
137904cy |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( 2^{8} \cdot 3^{2} \cdot 13^{9} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$3096576$ |
$2.389572$ |
$644811009586000/1651460733$ |
$0.94094$ |
$4.65045$ |
$[0, -1, 0, -1931388, -1030191696]$ |
\(y^2=x^3-x^2-1931388x-1030191696\) |
2.3.0.a.1, 12.6.0.c.1, 26.6.0.b.1, 156.12.0.? |
$[]$ |
137904.n2 |
137904cy1 |
137904.n |
137904cy |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3 \cdot 13^{12} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$1548288$ |
$2.042999$ |
$-602275072000/4184843403$ |
$0.96506$ |
$4.04347$ |
$[0, -1, 0, -74923, -28443182]$ |
\(y^2=x^3-x^2-74923x-28443182\) |
2.3.0.a.1, 6.6.0.a.1, 52.6.0.c.1, 156.12.0.? |
$[]$ |
137904.o1 |
137904bh3 |
137904.o |
137904bh |
$4$ |
$6$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( 2^{4} \cdot 3^{2} \cdot 13^{9} \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$2652$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$2903040$ |
$2.444351$ |
$840033089536000/477272151837$ |
$1.05946$ |
$4.43851$ |
$[0, -1, 0, -837113, 40073136]$ |
\(y^2=x^3-x^2-837113x+40073136\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.4, 26.6.0.b.1, $\ldots$ |
$[]$ |
137904.o2 |
137904bh1 |
137904.o |
137904bh |
$4$ |
$6$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( 2^{4} \cdot 3^{6} \cdot 13^{7} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$2652$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$967680$ |
$1.895046$ |
$216727177216000/2738853$ |
$0.98186$ |
$4.32403$ |
$[0, -1, 0, -532913, -149559060]$ |
\(y^2=x^3-x^2-532913x-149559060\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.10, 26.6.0.b.1, $\ldots$ |
$[]$ |
137904.o3 |
137904bh2 |
137904.o |
137904bh |
$4$ |
$6$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{12} \cdot 13^{8} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$2652$ |
$96$ |
$1$ |
$1$ |
$4$ |
$2$ |
$1$ |
$1935360$ |
$2.241619$ |
$-12479332642000/1526829993$ |
$0.91595$ |
$4.33331$ |
$[0, -1, 0, -518548, -158017172]$ |
\(y^2=x^3-x^2-518548x-158017172\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.2, 52.6.0.c.1, $\ldots$ |
$[]$ |
137904.o4 |
137904bh4 |
137904.o |
137904bh |
$4$ |
$6$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{4} \cdot 13^{12} \cdot 17^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$2652$ |
$96$ |
$1$ |
$1$ |
$4$ |
$2$ |
$1$ |
$5806080$ |
$2.790928$ |
$3258571509326000/1920843121977$ |
$1.13909$ |
$4.78734$ |
$[0, -1, 0, 3314372, 315731740]$ |
\(y^2=x^3-x^2+3314372x+315731740\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.8, 52.6.0.c.1, $\ldots$ |
$[]$ |
137904.p1 |
137904bi2 |
137904.p |
137904bi |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( 2^{12} \cdot 3^{2} \cdot 13^{3} \cdot 17^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2652$ |
$12$ |
$0$ |
$1.106972316$ |
$1$ |
|
$21$ |
$98304$ |
$0.694845$ |
$8615125/2601$ |
$0.84733$ |
$2.70245$ |
$[0, -1, 0, -888, 7344]$ |
\(y^2=x^3-x^2-888x+7344\) |
2.3.0.a.1, 26.6.0.b.1, 204.6.0.?, 2652.12.0.? |
$[(60, 408), (26, 34)]$ |
137904.p2 |
137904bi1 |
137904.p |
137904bi |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( - 2^{12} \cdot 3 \cdot 13^{3} \cdot 17 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2652$ |
$12$ |
$0$ |
$4.427889267$ |
$1$ |
|
$9$ |
$49152$ |
$0.348272$ |
$42875/51$ |
$0.76818$ |
$2.25891$ |
$[0, -1, 0, 152, 688]$ |
\(y^2=x^3-x^2+152x+688\) |
2.3.0.a.1, 52.6.0.c.1, 204.6.0.?, 1326.6.0.?, 2652.12.0.? |
$[(9, 52), (-3, 14)]$ |
137904.q1 |
137904bj2 |
137904.q |
137904bj |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( 2^{14} \cdot 3^{4} \cdot 13^{7} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$2.964779478$ |
$1$ |
|
$7$ |
$1032192$ |
$2.096161$ |
$2441288319625/1217268$ |
$0.92133$ |
$4.41352$ |
$[0, -1, 0, -758528, -253913856]$ |
\(y^2=x^3-x^2-758528x-253913856\) |
2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? |
$[(-494, 34)]$ |
137904.q2 |
137904bj1 |
137904.q |
137904bj |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( 2^{16} \cdot 3^{2} \cdot 13^{8} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$1.482389739$ |
$1$ |
|
$9$ |
$516096$ |
$1.749586$ |
$955671625/413712$ |
$0.87130$ |
$3.75057$ |
$[0, -1, 0, -55488, -2506752]$ |
\(y^2=x^3-x^2-55488x-2506752\) |
2.3.0.a.1, 34.6.0.a.1, 52.6.0.c.1, 884.12.0.? |
$[(672, 16224)]$ |
137904.r1 |
137904bk2 |
137904.r |
137904bk |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( 2^{12} \cdot 3^{8} \cdot 13^{7} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$2.825667970$ |
$1$ |
|
$5$ |
$1376256$ |
$2.105518$ |
$104154702625/24649677$ |
$0.90385$ |
$4.14698$ |
$[0, -1, 0, -265048, -40289744]$ |
\(y^2=x^3-x^2-265048x-40289744\) |
2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? |
$[(-238, 3042)]$ |
137904.r2 |
137904bk1 |
137904.r |
137904bk |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( 2^{12} \cdot 3^{4} \cdot 13^{8} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$1.412833985$ |
$1$ |
|
$7$ |
$688128$ |
$1.758945$ |
$3981876625/232713$ |
$0.86491$ |
$3.87116$ |
$[0, -1, 0, -89288, 9766704]$ |
\(y^2=x^3-x^2-89288x+9766704\) |
2.3.0.a.1, 34.6.0.a.1, 52.6.0.c.1, 884.12.0.? |
$[(100, 1352)]$ |
137904.s1 |
137904bl2 |
137904.s |
137904bl |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( 2^{8} \cdot 3 \cdot 13^{8} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$3.552823581$ |
$4$ |
$2$ |
$3$ |
$1290240$ |
$1.956287$ |
$42830942866000/146523$ |
$0.92201$ |
$4.42131$ |
$[0, -1, 0, -782188, -266004116]$ |
\(y^2=x^3-x^2-782188x-266004116\) |
2.3.0.a.1, 12.6.0.a.1, 52.6.0.c.1, 156.12.0.? |
$[(1361, 34476)]$ |
137904.s2 |
137904bl1 |
137904.s |
137904bl |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( 2^{4} \cdot 3^{2} \cdot 13^{7} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1.776411790$ |
$1$ |
|
$3$ |
$645120$ |
$1.609715$ |
$174456832000/9771957$ |
$1.16543$ |
$3.72199$ |
$[0, -1, 0, -49573, -4020992]$ |
\(y^2=x^3-x^2-49573x-4020992\) |
2.3.0.a.1, 12.6.0.b.1, 26.6.0.b.1, 156.12.0.? |
$[(-1232/3, 11492/3)]$ |
137904.t1 |
137904bm1 |
137904.t |
137904bm |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{3} \cdot 13^{2} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$156$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$51840$ |
$0.531082$ |
$-4566016000/7803$ |
$0.91398$ |
$2.78174$ |
$[0, -1, 0, -1213, -15887]$ |
\(y^2=x^3-x^2-1213x-15887\) |
3.4.0.a.1, 6.8.0.b.1, 156.16.0.? |
$[]$ |
137904.t2 |
137904bm2 |
137904.t |
137904bm |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3 \cdot 13^{2} \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$156$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$155520$ |
$1.080387$ |
$17718272000/72412707$ |
$0.98056$ |
$3.04834$ |
$[0, -1, 0, 1907, -79535]$ |
\(y^2=x^3-x^2+1907x-79535\) |
3.4.0.a.1, 6.8.0.b.1, 156.16.0.? |
$[]$ |
137904.u1 |
137904bn1 |
137904.u |
137904bn |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{3} \cdot 13^{8} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$12$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$673920$ |
$1.813557$ |
$-4566016000/7803$ |
$0.91398$ |
$4.08217$ |
$[0, -1, 0, -205053, -35723871]$ |
\(y^2=x^3-x^2-205053x-35723871\) |
3.4.0.a.1, 6.8.0.b.1, 12.16.0-6.b.1.1 |
$[]$ |
137904.u2 |
137904bn2 |
137904.u |
137904bn |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3 \cdot 13^{8} \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$12$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2021760$ |
$2.362862$ |
$17718272000/72412707$ |
$0.98056$ |
$4.34877$ |
$[0, -1, 0, 322227, -173449407]$ |
\(y^2=x^3-x^2+322227x-173449407\) |
3.4.0.a.1, 6.8.0.b.1, 12.16.0-6.b.1.2 |
$[]$ |
137904.v1 |
137904cz2 |
137904.v |
137904cz |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( 2^{10} \cdot 3^{16} \cdot 13^{9} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$12386304$ |
$3.134945$ |
$64122592551794500/27331783704693$ |
$0.99192$ |
$5.15626$ |
$[0, -1, 0, -14204168, -10571307072]$ |
\(y^2=x^3-x^2-14204168x-10571307072\) |
2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? |
$[]$ |
137904.v2 |
137904cz1 |
137904.v |
137904cz |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( 2^{8} \cdot 3^{8} \cdot 13^{12} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$6193152$ |
$2.788372$ |
$27873248949250000/538367795433$ |
$1.00820$ |
$4.96871$ |
$[0, -1, 0, -6778308, 6680450880]$ |
\(y^2=x^3-x^2-6778308x+6680450880\) |
2.3.0.a.1, 34.6.0.a.1, 52.6.0.c.1, 884.12.0.? |
$[]$ |
137904.w1 |
137904da2 |
137904.w |
137904da |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( 2^{8} \cdot 3^{2} \cdot 13^{12} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1548288$ |
$2.140999$ |
$1603530178000/738501777$ |
$0.92097$ |
$4.14372$ |
$[0, -1, 0, -261668, -23192352]$ |
\(y^2=x^3-x^2-261668x-23192352\) |
2.3.0.a.1, 34.6.0.a.1, 52.6.0.c.1, 884.12.0.? |
$[]$ |
137904.w2 |
137904da1 |
137904.w |
137904da |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( 2^{4} \cdot 3^{4} \cdot 13^{9} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$774144$ |
$1.794424$ |
$3322336000000/51429573$ |
$0.98800$ |
$3.97099$ |
$[0, -1, 0, -132383, 18333990]$ |
\(y^2=x^3-x^2-132383x+18333990\) |
2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? |
$[]$ |
137904.x1 |
137904bo3 |
137904.x |
137904bo |
$4$ |
$6$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( 2^{30} \cdot 3^{2} \cdot 13^{6} \cdot 17^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.4, 3.4.0.1 |
2B, 3B |
$5304$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$3981312$ |
$2.617046$ |
$46753267515625/11591221248$ |
$1.08666$ |
$4.66300$ |
$[0, -1, 0, -2029408, 841963264]$ |
\(y^2=x^3-x^2-2029408x+841963264\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 24.24.0.bx.1, $\ldots$ |
$[]$ |
137904.x2 |
137904bo1 |
137904.x |
137904bo |
$4$ |
$6$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( 2^{18} \cdot 3^{6} \cdot 13^{6} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.4, 3.4.0.1 |
2B, 3B |
$5304$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$1327104$ |
$2.067741$ |
$1845026709625/793152$ |
$1.00293$ |
$4.38986$ |
$[0, -1, 0, -690928, -220741184]$ |
\(y^2=x^3-x^2-690928x-220741184\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 24.24.0.bx.1, $\ldots$ |
$[]$ |
137904.x3 |
137904bo2 |
137904.x |
137904bo |
$4$ |
$6$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( - 2^{15} \cdot 3^{12} \cdot 13^{6} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.5, 3.4.0.1 |
2B, 3B |
$5304$ |
$96$ |
$1$ |
$1$ |
$4$ |
$2$ |
$1$ |
$2654208$ |
$2.414314$ |
$-1107111813625/1228691592$ |
$1.01884$ |
$4.43719$ |
$[0, -1, 0, -582768, -292299840]$ |
\(y^2=x^3-x^2-582768x-292299840\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 24.24.0.p.1, $\ldots$ |
$[]$ |
137904.x4 |
137904bo4 |
137904.x |
137904bo |
$4$ |
$6$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( - 2^{21} \cdot 3^{4} \cdot 13^{6} \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.5, 3.4.0.1 |
2B, 3B |
$5304$ |
$96$ |
$1$ |
$1$ |
$4$ |
$2$ |
$1$ |
$7962624$ |
$2.963623$ |
$655215969476375/1001033261568$ |
$1.05358$ |
$4.92789$ |
$[0, -1, 0, 4892832, 5333112576]$ |
\(y^2=x^3-x^2+4892832x+5333112576\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 24.24.0.p.1, $\ldots$ |
$[]$ |
137904.y1 |
137904db1 |
137904.y |
137904db |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( 2^{10} \cdot 3^{2} \cdot 13^{6} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$136$ |
$12$ |
$0$ |
$0.909322420$ |
$1$ |
|
$7$ |
$147456$ |
$1.088741$ |
$12194500/153$ |
$0.87537$ |
$3.26488$ |
$[0, -1, 0, -8168, 283776]$ |
\(y^2=x^3-x^2-8168x+283776\) |
2.3.0.a.1, 8.6.0.d.1, 34.6.0.a.1, 136.12.0.? |
$[(22, 338)]$ |