Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
144.a1 |
144a4 |
144.a |
144a |
$4$ |
$6$ |
\( 2^{4} \cdot 3^{2} \) |
\( 2^{8} \cdot 3^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q(\sqrt{-3})$ |
$-12$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$1$ |
|
$1$ |
$24$ |
$0.080464$ |
$54000$ |
$1.02720$ |
$5.29787$ |
$[0, 0, 0, -135, 594]$ |
\(y^2=x^3-135x+594\) |
|
$[]$ |
144.a2 |
144a2 |
144.a |
144a |
$4$ |
$6$ |
\( 2^{4} \cdot 3^{2} \) |
\( 2^{8} \cdot 3^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q(\sqrt{-3})$ |
$-12$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$1$ |
|
$1$ |
$8$ |
$-0.468842$ |
$54000$ |
$1.02720$ |
$3.97153$ |
$[0, 0, 0, -15, -22]$ |
\(y^2=x^3-15x-22\) |
|
$[]$ |
144.a3 |
144a1 |
144.a |
144a |
$4$ |
$6$ |
\( 2^{4} \cdot 3^{2} \) |
\( - 2^{4} \cdot 3^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$2$ |
16.192.9.83 |
2B |
|
|
|
$1$ |
$1$ |
|
$1$ |
$4$ |
$-0.815415$ |
$0$ |
|
$2.72106$ |
$[0, 0, 0, 0, -1]$ |
\(y^2=x^3-1\) |
|
$[]$ |
144.a4 |
144a3 |
144.a |
144a |
$4$ |
$6$ |
\( 2^{4} \cdot 3^{2} \) |
\( - 2^{4} \cdot 3^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$2$ |
16.192.9.83 |
2B |
|
|
|
$1$ |
$1$ |
|
$1$ |
$12$ |
$-0.266109$ |
$0$ |
|
$4.04740$ |
$[0, 0, 0, 0, 27]$ |
\(y^2=x^3+27\) |
|
$[]$ |
144.b1 |
144b5 |
144.b |
144b |
$6$ |
$8$ |
\( 2^{4} \cdot 3^{2} \) |
\( 2^{11} \cdot 3^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.96.0.270 |
2B |
$48$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$64$ |
$0.597101$ |
$3065617154/9$ |
$1.21059$ |
$7.25577$ |
$[0, 0, 0, -3459, -78302]$ |
\(y^2=x^3-3459x-78302\) |
2.3.0.a.1, 4.6.0.c.1, 8.48.0-8.r.1.3, 12.12.0-4.c.1.2, 16.96.0-16.l.1.7, $\ldots$ |
$[]$ |
144.b2 |
144b4 |
144.b |
144b |
$6$ |
$8$ |
\( 2^{4} \cdot 3^{2} \) |
\( 2^{10} \cdot 3^{7} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.96.0.126 |
2B |
$48$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$3$ |
$32$ |
$0.250527$ |
$28756228/3$ |
$1.05617$ |
$6.17679$ |
$[0, 0, 0, -579, 5362]$ |
\(y^2=x^3-579x+5362\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 8.48.0-8.bb.2.5, 12.24.0-12.h.1.2, 16.96.0-16.bb.2.5, $\ldots$ |
$[]$ |
144.b3 |
144b3 |
144.b |
144b |
$6$ |
$8$ |
\( 2^{4} \cdot 3^{2} \) |
\( 2^{10} \cdot 3^{10} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.96.0.137 |
2Cs |
$24$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$3$ |
$32$ |
$0.250527$ |
$1556068/81$ |
$1.03212$ |
$5.58991$ |
$[0, 0, 0, -219, -1190]$ |
\(y^2=x^3-219x-1190\) |
2.6.0.a.1, 4.12.0.b.1, 8.96.0-8.e.2.3, 12.24.0-4.b.1.3, 24.192.1-24.bl.2.3 |
$[]$ |
144.b4 |
144b2 |
144.b |
144b |
$6$ |
$8$ |
\( 2^{4} \cdot 3^{2} \) |
\( 2^{8} \cdot 3^{8} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.96.0.21 |
2Cs |
$24$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$3$ |
$16$ |
$-0.096046$ |
$35152/9$ |
$0.97255$ |
$4.54832$ |
$[0, 0, 0, -39, 70]$ |
\(y^2=x^3-39x+70\) |
2.6.0.a.1, 4.24.0-4.b.1.2, 8.96.0-8.h.1.3, 12.48.0-12.c.1.2, 24.192.1-24.bu.1.8 |
$[]$ |
144.b5 |
144b1 |
144.b |
144b |
$6$ |
$8$ |
\( 2^{4} \cdot 3^{2} \) |
\( - 2^{4} \cdot 3^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.96.0.162 |
2B |
$48$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$8$ |
$-0.442620$ |
$2048/3$ |
$1.17572$ |
$3.50415$ |
$[0, 0, 0, 6, 7]$ |
\(y^2=x^3+6x+7\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 6.6.0.a.1, 8.48.0-8.ba.1.8, 12.24.0-12.g.1.1, $\ldots$ |
$[]$ |
144.b6 |
144b6 |
144.b |
144b |
$6$ |
$8$ |
\( 2^{4} \cdot 3^{2} \) |
\( - 2^{11} \cdot 3^{14} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.96.0.251 |
2B |
$48$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$64$ |
$0.597101$ |
$207646/6561$ |
$1.15980$ |
$6.12527$ |
$[0, 0, 0, 141, -4718]$ |
\(y^2=x^3+141x-4718\) |
2.3.0.a.1, 4.6.0.c.1, 8.48.0.m.1, 12.12.0-4.c.1.2, 16.96.0-8.m.1.2, $\ldots$ |
$[]$ |