Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
147.a1 |
147a5 |
147.a |
147a |
$6$ |
$8$ |
\( 3 \cdot 7^{2} \) |
\( 3 \cdot 7^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.174 |
2B |
$336$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$192$ |
$1.047161$ |
$53297461115137/147$ |
$1.05087$ |
$8.67307$ |
$[1, 1, 1, -38417, 2882228]$ |
\(y^2+xy+y=x^3+x^2-38417x+2882228\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.3, 12.12.0.h.1, 16.48.0-16.e.2.3, $\ldots$ |
$[]$ |
147.a2 |
147a4 |
147.a |
147a |
$6$ |
$8$ |
\( 3 \cdot 7^{2} \) |
\( 3^{2} \cdot 7^{10} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.109 |
2Cs |
$168$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$2$ |
$96$ |
$0.700587$ |
$13027640977/21609$ |
$1.08149$ |
$7.00657$ |
$[1, 1, 1, -2402, 44246]$ |
\(y^2+xy+y=x^3+x^2-2402x+44246\) |
2.6.0.a.1, 4.12.0.b.1, 8.48.0-8.e.1.10, 12.24.0.c.1, 24.96.0-24.j.2.15, $\ldots$ |
$[]$ |
147.a3 |
147a3 |
147.a |
147a |
$6$ |
$8$ |
\( 3 \cdot 7^{2} \) |
\( 3^{8} \cdot 7^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.182 |
2B |
$336$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$96$ |
$0.700587$ |
$6570725617/45927$ |
$1.00160$ |
$6.86941$ |
$[1, 1, 1, -1912, -32782]$ |
\(y^2+xy+y=x^3+x^2-1912x-32782\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 8.48.0-8.bb.1.6, 28.24.0-28.h.1.1, 48.96.0-48.bf.1.10, $\ldots$ |
$[]$ |
147.a4 |
147a6 |
147.a |
147a |
$6$ |
$8$ |
\( 3 \cdot 7^{2} \) |
\( - 3 \cdot 7^{14} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.125 |
2B |
$336$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$192$ |
$1.047161$ |
$-4354703137/17294403$ |
$1.04266$ |
$7.20020$ |
$[1, 1, 1, -1667, 72764]$ |
\(y^2+xy+y=x^3+x^2-1667x+72764\) |
2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.bb.2, 12.12.0.g.1, $\ldots$ |
$[]$ |
147.a5 |
147a2 |
147.a |
147a |
$6$ |
$8$ |
\( 3 \cdot 7^{2} \) |
\( 3^{4} \cdot 7^{8} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.11 |
2Cs |
$168$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$2$ |
$48$ |
$0.354013$ |
$7189057/3969$ |
$1.14862$ |
$5.50324$ |
$[1, 1, 1, -197, 146]$ |
\(y^2+xy+y=x^3+x^2-197x+146\) |
2.6.0.a.1, 4.24.0-4.b.1.2, 8.48.0-8.e.2.15, 24.96.0-24.w.2.15, 28.48.0-28.c.1.4, $\ldots$ |
$[]$ |
147.a6 |
147a1 |
147.a |
147a |
$6$ |
$8$ |
\( 3 \cdot 7^{2} \) |
\( - 3^{2} \cdot 7^{7} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.33 |
2B |
$336$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$3$ |
$24$ |
$0.007440$ |
$103823/63$ |
$0.97868$ |
$4.65409$ |
$[1, 1, 1, 48, 48]$ |
\(y^2+xy+y=x^3+x^2+48x+48\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.n.1.12, 14.6.0.b.1, 16.48.0-16.e.1.15, $\ldots$ |
$[]$ |
147.b1 |
147c2 |
147.b |
147c |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \) |
\( - 3^{13} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$546$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$78$ |
$0.437387$ |
$-1713910976512/1594323$ |
$1.10592$ |
$6.42494$ |
$[0, -1, 1, -912, 10919]$ |
\(y^2+y=x^3-x^2-912x+10919\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.168.2.?, 546.336.9.? |
$[]$ |
147.b2 |
147c1 |
147.b |
147c |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \) |
\( - 3 \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$546$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$6$ |
$-0.845087$ |
$-28672/3$ |
$0.91239$ |
$2.86983$ |
$[0, -1, 1, -2, -1]$ |
\(y^2+y=x^3-x^2-2x-1\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.168.2.?, 546.336.9.? |
$[]$ |
147.c1 |
147b2 |
147.c |
147b |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \) |
\( - 3^{13} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.56.0.3 |
13B.3.2 |
$546$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$546$ |
$1.410343$ |
$-1713910976512/1594323$ |
$1.10592$ |
$8.76451$ |
$[0, 1, 1, -44704, -3655907]$ |
\(y^2+y=x^3+x^2-44704x-3655907\) |
6.2.0.a.1, 13.56.0-13.a.2.2, 78.112.1.?, 91.168.2.?, 546.336.9.? |
$[]$ |
147.c2 |
147b1 |
147.c |
147b |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \) |
\( - 3 \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.56.0.1 |
13B.3.1 |
$546$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$42$ |
$0.127867$ |
$-28672/3$ |
$0.91239$ |
$5.20940$ |
$[0, 1, 1, -114, 473]$ |
\(y^2+y=x^3+x^2-114x+473\) |
6.2.0.a.1, 13.56.0-13.a.1.1, 78.112.1.?, 91.168.2.?, 546.336.9.? |
$[]$ |