Learn more

Refine search


Results (1-50 of 106 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
15210.a1 15210.a \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -131609880, -581107211424]$ \(y^2+xy=x^3-x^2-131609880x-581107211424\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.s.1, 40.12.0.bb.1, 52.12.0-4.c.1.1, $\ldots$
15210.a2 15210.a \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -9443160, -6213892320]$ \(y^2+xy=x^3-x^2-9443160x-6213892320\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.y.1, 40.12.0.v.1, 104.12.0.?, $\ldots$
15210.a3 15210.a \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -8226360, -9076536000]$ \(y^2+xy=x^3-x^2-8226360x-9076536000\) 2.6.0.a.1, 24.12.0.b.1, 40.12.0.a.1, 52.12.0-2.a.1.1, 60.12.0.b.1, $\ldots$
15210.a4 15210.a \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -438840, -184745664]$ \(y^2+xy=x^3-x^2-438840x-184745664\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.y.1, 30.6.0.a.1, 40.12.0.bb.1, $\ldots$
15210.b1 15210.b \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -146340, -21729200]$ \(y^2+xy=x^3-x^2-146340x-21729200\) 40.2.0.a.1
15210.c1 15210.c \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -203085, -83740955]$ \(y^2+xy=x^3-x^2-203085x-83740955\) 40.2.0.a.1
15210.d1 15210.d \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -692340, 239849936]$ \(y^2+xy=x^3-x^2-692340x+239849936\) 7.8.0.a.1, 21.16.0-7.a.1.1, 40.2.0.a.1, 91.24.0.?, 273.48.0.?, $\ldots$
15210.d2 15210.d \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -7890, -437644]$ \(y^2+xy=x^3-x^2-7890x-437644\) 7.8.0.a.1, 21.16.0-7.a.1.2, 40.2.0.a.1, 91.24.0.?, 273.48.0.?, $\ldots$
15210.e1 15210.e \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -1290600, -565400250]$ \(y^2+xy=x^3-x^2-1290600x-565400250\) 3.4.0.a.1, 39.8.0-3.a.1.2, 120.8.0.?, 1560.16.0.?
15210.e2 15210.e \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 2565135, -2899662219]$ \(y^2+xy=x^3-x^2+2565135x-2899662219\) 3.4.0.a.1, 39.8.0-3.a.1.1, 120.8.0.?, 1560.16.0.?
15210.f1 15210.f \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $9.838992324$ $[1, -1, 0, -895140, -322302200]$ \(y^2+xy=x^3-x^2-895140x-322302200\) 2.3.0.a.1, 3.6.0.b.1, 6.18.0.b.1, 24.36.0.e.1, 39.12.0.a.1, $\ldots$
15210.f2 15210.f \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $4.919496162$ $[1, -1, 0, -104220, 4980496]$ \(y^2+xy=x^3-x^2-104220x+4980496\) 2.3.0.a.1, 3.6.0.b.1, 6.18.0.b.1, 24.36.0.d.1, 30.36.0.d.1, $\ldots$
15210.g1 15210.g \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -735435, 242893795]$ \(y^2+xy=x^3-x^2-735435x+242893795\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0.v.1, 104.12.0.?, $\ldots$
15210.g2 15210.g \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -50985, 2925625]$ \(y^2+xy=x^3-x^2-50985x+2925625\) 2.6.0.a.1, 12.12.0-2.a.1.1, 40.12.0.a.1, 104.12.0.?, 120.24.0.?, $\ldots$
15210.g3 15210.g \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -20565, -1095899]$ \(y^2+xy=x^3-x^2-20565x-1095899\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0.bb.1, 104.12.0.?, $\ldots$
15210.g4 15210.g \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 146745, 19969951]$ \(y^2+xy=x^3-x^2+146745x+19969951\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0.bb.1, 104.12.0.?, $\ldots$
15210.h1 15210.h \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.444935214$ $[1, -1, 0, -71265, 8620925]$ \(y^2+xy=x^3-x^2-71265x+8620925\) 120.2.0.?
15210.i1 15210.i \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $5.820317101$ $[1, -1, 0, -3795, -104779]$ \(y^2+xy=x^3-x^2-3795x-104779\) 120.2.0.?
15210.j1 15210.j \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -90, -324]$ \(y^2+xy=x^3-x^2-90x-324\) 3.4.0.a.1, 39.8.0-3.a.1.2, 40.2.0.a.1, 120.8.0.?, 1560.16.0.?
15210.j2 15210.j \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 495, -675]$ \(y^2+xy=x^3-x^2+495x-675\) 3.4.0.a.1, 39.8.0-3.a.1.1, 40.2.0.a.1, 120.8.0.?, 1560.16.0.?
15210.k1 15210.k \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -8112285, 8895327741]$ \(y^2+xy=x^3-x^2-8112285x+8895327741\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.24.0.g.1, $\ldots$
15210.k2 15210.k \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -689805, 30185325]$ \(y^2+xy=x^3-x^2-689805x+30185325\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.48.0.c.3, $\ldots$
15210.k3 15210.k \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -507285, 138930741]$ \(y^2+xy=x^3-x^2-507285x+138930741\) 2.6.0.a.1, 3.4.0.a.1, 6.24.0.a.1, 12.48.0.a.1, 24.96.1.cp.2, $\ldots$
15210.k4 15210.k \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -438840, -111783294]$ \(y^2+xy=x^3-x^2-438840x-111783294\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.48.0.c.4, $\ldots$
15210.k5 15210.k \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -104220, 11180430]$ \(y^2+xy=x^3-x^2-104220x+11180430\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.24.0.g.1, $\ldots$
15210.k6 15210.k \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -28170, -1641600]$ \(y^2+xy=x^3-x^2-28170x-1641600\) 2.6.0.a.1, 3.4.0.a.1, 6.24.0.a.1, 12.48.0.a.2, 24.96.1.cp.4, $\ldots$
15210.k7 15210.k \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -20565, 3719925]$ \(y^2+xy=x^3-x^2-20565x+3719925\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.48.0.c.1, $\ldots$
15210.k8 15210.k \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 2250, -126684]$ \(y^2+xy=x^3-x^2+2250x-126684\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.48.0.c.2, $\ldots$
15210.l1 15210.l \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -44550, 3630420]$ \(y^2+xy=x^3-x^2-44550x+3630420\) 40.2.0.a.1
15210.m1 15210.m \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 1236, -15482]$ \(y^2+xy=x^3-x^2+1236x-15482\) 120.2.0.?
15210.n1 15210.n \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -120454359, -254692165987]$ \(y^2+xy=x^3-x^2-120454359x-254692165987\) 2.3.0.a.1, 12.6.0.a.1, 52.6.0.e.1, 156.12.0.?
15210.n2 15210.n \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 25561641, -29506290787]$ \(y^2+xy=x^3-x^2+25561641x-29506290787\) 2.3.0.a.1, 12.6.0.b.1, 52.6.0.e.1, 78.6.0.?, 156.12.0.?
15210.o1 15210.o \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $11.85329435$ $[1, -1, 0, -1327190409, 18610273870605]$ \(y^2+xy=x^3-x^2-1327190409x+18610273870605\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.5, 39.8.0-3.a.1.1, $\ldots$
15210.o2 15210.o \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $5.926647177$ $[1, -1, 0, -81187209, 303745655565]$ \(y^2+xy=x^3-x^2-81187209x+303745655565\) 2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.3, 39.8.0-3.a.1.1, 40.6.0.c.1, $\ldots$
15210.o3 15210.o \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $3.951098118$ $[1, -1, 0, -24339834, -1733847660]$ \(y^2+xy=x^3-x^2-24339834x-1733847660\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.11, 39.8.0-3.a.1.2, $\ldots$
15210.o4 15210.o \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $1.975549059$ $[1, -1, 0, 6080166, -218931660]$ \(y^2+xy=x^3-x^2+6080166x-218931660\) 2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.1, 39.8.0-3.a.1.2, 40.6.0.c.1, $\ldots$
15210.p1 15210.p \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -36789, -700777]$ \(y^2+xy=x^3-x^2-36789x-700777\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0.ca.1, 39.8.0-3.a.1.2, $\ldots$
15210.p2 15210.p \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -21579, 1225485]$ \(y^2+xy=x^3-x^2-21579x+1225485\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0.ca.1, 39.8.0-3.a.1.1, $\ldots$
15210.p3 15210.p \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -1299, 20853]$ \(y^2+xy=x^3-x^2-1299x+20853\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0.cd.1, 30.24.0.b.1, $\ldots$
15210.p4 15210.p \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 8841, -89335]$ \(y^2+xy=x^3-x^2+8841x-89335\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0.cd.1, 30.24.0.b.1, $\ldots$
15210.q1 15210.q \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -1053324, -415828490]$ \(y^2+xy=x^3-x^2-1053324x-415828490\) 2.3.0.a.1, 120.6.0.?, 156.6.0.?, 520.6.0.?, 1560.12.0.?
15210.q2 15210.q \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -64674, -6725120]$ \(y^2+xy=x^3-x^2-64674x-6725120\) 2.3.0.a.1, 78.6.0.?, 120.6.0.?, 520.6.0.?, 1560.12.0.?
15210.r1 15210.r \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -202149, 33743893]$ \(y^2+xy=x^3-x^2-202149x+33743893\) 2.3.0.a.1, 3.6.0.b.1, 6.18.0.b.1, 24.36.0.c.1, 30.36.0.d.1, $\ldots$
15210.r2 15210.r \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 97371, 124977685]$ \(y^2+xy=x^3-x^2+97371x+124977685\) 2.3.0.a.1, 3.6.0.b.1, 6.18.0.b.1, 24.36.0.f.1, 39.12.0.a.1, $\ldots$
15210.s1 15210.s \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.002332457$ $[1, -1, 0, 359451, -34771307]$ \(y^2+xy=x^3-x^2+359451x-34771307\) 120.2.0.?
15210.t1 15210.t \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $4.385003700$ $[1, -1, 0, -64674, 39543700]$ \(y^2+xy=x^3-x^2-64674x+39543700\) 120.2.0.?
15210.u1 15210.u \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $2.499662245$ $[1, -1, 0, -1296684, 568650928]$ \(y^2+xy=x^3-x^2-1296684x+568650928\) 2.3.0.a.1, 40.6.0.b.1, 156.6.0.?, 1560.12.0.?
15210.u2 15210.u \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $1.249831122$ $[1, -1, 0, -79884, 9166288]$ \(y^2+xy=x^3-x^2-79884x+9166288\) 2.3.0.a.1, 40.6.0.c.1, 78.6.0.?, 1560.12.0.?
15210.v1 15210.v \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $6.590730886$ $[1, -1, 0, -315639, 65594205]$ \(y^2+xy=x^3-x^2-315639x+65594205\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$
15210.v2 15210.v \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $2.196910295$ $[1, -1, 0, -49464, -4196880]$ \(y^2+xy=x^3-x^2-49464x-4196880\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$
Next   displayed columns for results