Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
15210.a1 |
15210o3 |
15210.a |
15210o |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( 2^{5} \cdot 3^{7} \cdot 5^{4} \cdot 13^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1560$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$1720320$ |
$3.029045$ |
$71647584155243142409/10140000$ |
$1.03753$ |
$7.03029$ |
$[1, -1, 0, -131609880, -581107211424]$ |
\(y^2+xy=x^3-x^2-131609880x-581107211424\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.s.1, 40.12.0.bb.1, 52.12.0-4.c.1.1, $\ldots$ |
$[]$ |
15210.a2 |
15210o4 |
15210.a |
15210o |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( 2^{5} \cdot 3^{10} \cdot 5 \cdot 13^{14} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1560$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1720320$ |
$3.029045$ |
$26465989780414729/10571870144160$ |
$1.02500$ |
$6.20953$ |
$[1, -1, 0, -9443160, -6213892320]$ |
\(y^2+xy=x^3-x^2-9443160x-6213892320\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.y.1, 40.12.0.v.1, 104.12.0.?, $\ldots$ |
$[]$ |
15210.a3 |
15210o2 |
15210.a |
15210o |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{2} \cdot 13^{10} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$1560$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$860160$ |
$2.682472$ |
$17496824387403529/6580454400$ |
$1.00721$ |
$6.16656$ |
$[1, -1, 0, -8226360, -9076536000]$ |
\(y^2+xy=x^3-x^2-8226360x-9076536000\) |
2.6.0.a.1, 24.12.0.b.1, 40.12.0.a.1, 52.12.0-2.a.1.1, 60.12.0.b.1, $\ldots$ |
$[]$ |
15210.a4 |
15210o1 |
15210.a |
15210o |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{20} \cdot 3^{7} \cdot 5 \cdot 13^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1560$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$430080$ |
$2.335896$ |
$-2656166199049/2658140160$ |
$0.97703$ |
$5.35772$ |
$[1, -1, 0, -438840, -184745664]$ |
\(y^2+xy=x^3-x^2-438840x-184745664\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.y.1, 30.6.0.a.1, 40.12.0.bb.1, $\ldots$ |
$[]$ |
15210.b1 |
15210m1 |
15210.b |
15210m |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{17} \cdot 3^{10} \cdot 5^{5} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$130560$ |
$1.808084$ |
$-2813198004118489/33177600000$ |
$1.02381$ |
$4.91342$ |
$[1, -1, 0, -146340, -21729200]$ |
\(y^2+xy=x^3-x^2-146340x-21729200\) |
40.2.0.a.1 |
$[]$ |
15210.c1 |
15210k1 |
15210.c |
15210k |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{7} \cdot 3^{14} \cdot 5 \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$279552$ |
$2.217560$ |
$-1557701041/4199040$ |
$0.96965$ |
$5.19339$ |
$[1, -1, 0, -203085, -83740955]$ |
\(y^2+xy=x^3-x^2-203085x-83740955\) |
40.2.0.a.1 |
$[]$ |
15210.d1 |
15210l2 |
15210.d |
15210l |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{35} \cdot 3^{6} \cdot 5 \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$10920$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$376320$ |
$2.301090$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$5.41166$ |
$[1, -1, 0, -692340, 239849936]$ |
\(y^2+xy=x^3-x^2-692340x+239849936\) |
7.8.0.a.1, 21.16.0-7.a.1.1, 40.2.0.a.1, 91.24.0.?, 273.48.0.?, $\ldots$ |
$[]$ |
15210.d2 |
15210l1 |
15210.d |
15210l |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{5} \cdot 3^{6} \cdot 5^{7} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$10920$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$53760$ |
$1.328136$ |
$-2609064081/2500000$ |
$1.05128$ |
$4.10298$ |
$[1, -1, 0, -7890, -437644]$ |
\(y^2+xy=x^3-x^2-7890x-437644\) |
7.8.0.a.1, 21.16.0-7.a.1.2, 40.2.0.a.1, 91.24.0.?, 273.48.0.?, $\ldots$ |
$[]$ |
15210.e1 |
15210j1 |
15210.e |
15210j |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2 \cdot 3^{9} \cdot 5^{3} \cdot 13^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$314496$ |
$2.293171$ |
$-2365581049/6750$ |
$0.97050$ |
$5.59003$ |
$[1, -1, 0, -1290600, -565400250]$ |
\(y^2+xy=x^3-x^2-1290600x-565400250\) |
3.4.0.a.1, 39.8.0-3.a.1.2, 120.8.0.?, 1560.16.0.? |
$[]$ |
15210.e2 |
15210j2 |
15210.e |
15210j |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{3} \cdot 3^{7} \cdot 5^{9} \cdot 13^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$943488$ |
$2.842480$ |
$18573478391/46875000$ |
$1.02244$ |
$5.92940$ |
$[1, -1, 0, 2565135, -2899662219]$ |
\(y^2+xy=x^3-x^2+2565135x-2899662219\) |
3.4.0.a.1, 39.8.0-3.a.1.1, 120.8.0.?, 1560.16.0.? |
$[]$ |
15210.f1 |
15210q2 |
15210.f |
15210q |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( 2^{3} \cdot 3^{6} \cdot 5^{6} \cdot 13^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.6.0.1 |
2B, 3Ns |
$1560$ |
$144$ |
$5$ |
$9.838992324$ |
$1$ |
|
$0$ |
$269568$ |
$2.261623$ |
$10260751717/125000$ |
$1.10093$ |
$5.47554$ |
$[1, -1, 0, -895140, -322302200]$ |
\(y^2+xy=x^3-x^2-895140x-322302200\) |
2.3.0.a.1, 3.6.0.b.1, 6.18.0.b.1, 24.36.0.e.1, 39.12.0.a.1, $\ldots$ |
$[(-24681/7, 350545/7)]$ |
15210.f2 |
15210q1 |
15210.f |
15210q |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( 2^{6} \cdot 3^{6} \cdot 5^{3} \cdot 13^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.6.0.1 |
2B, 3Ns |
$1560$ |
$144$ |
$5$ |
$4.919496162$ |
$1$ |
|
$3$ |
$134784$ |
$1.915051$ |
$16194277/8000$ |
$0.94554$ |
$4.80559$ |
$[1, -1, 0, -104220, 4980496]$ |
\(y^2+xy=x^3-x^2-104220x+4980496\) |
2.3.0.a.1, 3.6.0.b.1, 6.18.0.b.1, 24.36.0.d.1, 30.36.0.d.1, $\ldots$ |
$[(-145, 4199)]$ |
15210.g1 |
15210h3 |
15210.g |
15210h |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( 2 \cdot 3^{8} \cdot 5 \cdot 13^{10} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1560$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$172032$ |
$2.058815$ |
$12501706118329/2570490$ |
$0.96978$ |
$5.41431$ |
$[1, -1, 0, -735435, 242893795]$ |
\(y^2+xy=x^3-x^2-735435x+242893795\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0.v.1, 104.12.0.?, $\ldots$ |
$[]$ |
15210.g2 |
15210h2 |
15210.g |
15210h |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( 2^{2} \cdot 3^{10} \cdot 5^{2} \cdot 13^{8} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$1560$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$86016$ |
$1.712240$ |
$4165509529/1368900$ |
$0.92273$ |
$4.58285$ |
$[1, -1, 0, -50985, 2925625]$ |
\(y^2+xy=x^3-x^2-50985x+2925625\) |
2.6.0.a.1, 12.12.0-2.a.1.1, 40.12.0.a.1, 104.12.0.?, 120.24.0.?, $\ldots$ |
$[]$ |
15210.g3 |
15210h1 |
15210.g |
15210h |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{8} \cdot 5 \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1560$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$43008$ |
$1.365665$ |
$273359449/9360$ |
$0.87806$ |
$4.29999$ |
$[1, -1, 0, -20565, -1095899]$ |
\(y^2+xy=x^3-x^2-20565x-1095899\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0.bb.1, 104.12.0.?, $\ldots$ |
$[]$ |
15210.g4 |
15210h4 |
15210.g |
15210h |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2 \cdot 3^{14} \cdot 5^{4} \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1560$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$172032$ |
$2.058815$ |
$99317171591/106616250$ |
$1.03579$ |
$4.91219$ |
$[1, -1, 0, 146745, 19969951]$ |
\(y^2+xy=x^3-x^2+146745x+19969951\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0.bb.1, 104.12.0.?, $\ldots$ |
$[]$ |
15210.h1 |
15210b1 |
15210.h |
15210b |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{7} \cdot 3^{3} \cdot 5^{5} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1.444935214$ |
$1$ |
|
$2$ |
$87360$ |
$1.780170$ |
$-1817378667/400000$ |
$1.15401$ |
$4.72064$ |
$[1, -1, 0, -71265, 8620925]$ |
\(y^2+xy=x^3-x^2-71265x+8620925\) |
120.2.0.? |
$[(127, 1204)]$ |
15210.i1 |
15210a1 |
15210.i |
15210a |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{7} \cdot 3^{9} \cdot 5^{5} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$5.820317101$ |
$1$ |
|
$0$ |
$20160$ |
$1.047003$ |
$-1817378667/400000$ |
$1.15401$ |
$3.80701$ |
$[1, -1, 0, -3795, -104779]$ |
\(y^2+xy=x^3-x^2-3795x-104779\) |
120.2.0.? |
$[(1165/4, -359/4)]$ |
15210.j1 |
15210i1 |
15210.j |
15210i |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{3} \cdot 3^{6} \cdot 5 \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3456$ |
$0.039092$ |
$-658489/40$ |
$0.82676$ |
$2.61888$ |
$[1, -1, 0, -90, -324]$ |
\(y^2+xy=x^3-x^2-90x-324\) |
3.4.0.a.1, 39.8.0-3.a.1.2, 40.2.0.a.1, 120.8.0.?, 1560.16.0.? |
$[]$ |
15210.j2 |
15210i2 |
15210.j |
15210i |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{9} \cdot 3^{6} \cdot 5^{3} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$10368$ |
$0.588398$ |
$108750551/64000$ |
$1.00157$ |
$3.13884$ |
$[1, -1, 0, 495, -675]$ |
\(y^2+xy=x^3-x^2+495x-675\) |
3.4.0.a.1, 39.8.0-3.a.1.1, 40.2.0.a.1, 120.8.0.?, 1560.16.0.? |
$[]$ |
15210.k1 |
15210n8 |
15210.k |
15210n |
$8$ |
$12$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( 2^{3} \cdot 3^{10} \cdot 5^{3} \cdot 13^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.1, 3.4.0.1 |
2B, 3B |
$1560$ |
$384$ |
$5$ |
$1$ |
$1$ |
|
$0$ |
$442368$ |
$2.395947$ |
$16778985534208729/81000$ |
$1.08181$ |
$6.16221$ |
$[1, -1, 0, -8112285, 8895327741]$ |
\(y^2+xy=x^3-x^2-8112285x+8895327741\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.24.0.g.1, $\ldots$ |
$[]$ |
15210.k2 |
15210n7 |
15210.k |
15210n |
$8$ |
$12$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( 2^{3} \cdot 3^{7} \cdot 5^{12} \cdot 13^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.1, 3.4.0.1 |
2B, 3B |
$1560$ |
$384$ |
$5$ |
$1$ |
$4$ |
$2$ |
$0$ |
$442368$ |
$2.395947$ |
$10316097499609/5859375000$ |
$1.13600$ |
$5.39436$ |
$[1, -1, 0, -689805, 30185325]$ |
\(y^2+xy=x^3-x^2-689805x+30185325\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.48.0.c.3, $\ldots$ |
$[]$ |
15210.k3 |
15210n6 |
15210.k |
15210n |
$8$ |
$12$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( 2^{6} \cdot 3^{8} \cdot 5^{6} \cdot 13^{6} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.6.0.1, 3.4.0.1 |
2Cs, 3B |
$1560$ |
$384$ |
$5$ |
$1$ |
$1$ |
|
$2$ |
$221184$ |
$2.049374$ |
$4102915888729/9000000$ |
$1.05221$ |
$5.29861$ |
$[1, -1, 0, -507285, 138930741]$ |
\(y^2+xy=x^3-x^2-507285x+138930741\) |
2.6.0.a.1, 3.4.0.a.1, 6.24.0.a.1, 12.48.0.a.1, 24.96.1.cp.2, $\ldots$ |
$[]$ |
15210.k4 |
15210n4 |
15210.k |
15210n |
$8$ |
$12$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( 2 \cdot 3^{9} \cdot 5^{4} \cdot 13^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.1, 3.4.0.1 |
2B, 3B |
$1560$ |
$384$ |
$5$ |
$1$ |
$4$ |
$2$ |
$0$ |
$147456$ |
$1.846642$ |
$2656166199049/33750$ |
$1.05017$ |
$5.25346$ |
$[1, -1, 0, -438840, -111783294]$ |
\(y^2+xy=x^3-x^2-438840x-111783294\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.48.0.c.4, $\ldots$ |
$[]$ |
15210.k5 |
15210n5 |
15210.k |
15210n |
$8$ |
$12$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( 2 \cdot 3^{18} \cdot 5 \cdot 13^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.1, 3.4.0.1 |
2B, 3B |
$1560$ |
$384$ |
$5$ |
$1$ |
$1$ |
|
$0$ |
$147456$ |
$1.846642$ |
$35578826569/5314410$ |
$1.03393$ |
$4.80559$ |
$[1, -1, 0, -104220, 11180430]$ |
\(y^2+xy=x^3-x^2-104220x+11180430\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.24.0.g.1, $\ldots$ |
$[]$ |
15210.k6 |
15210n2 |
15210.k |
15210n |
$8$ |
$12$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( 2^{2} \cdot 3^{12} \cdot 5^{2} \cdot 13^{6} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.6.0.1, 3.4.0.1 |
2Cs, 3B |
$1560$ |
$384$ |
$5$ |
$1$ |
$1$ |
|
$2$ |
$73728$ |
$1.500067$ |
$702595369/72900$ |
$1.00457$ |
$4.39802$ |
$[1, -1, 0, -28170, -1641600]$ |
\(y^2+xy=x^3-x^2-28170x-1641600\) |
2.6.0.a.1, 3.4.0.a.1, 6.24.0.a.1, 12.48.0.a.2, 24.96.1.cp.4, $\ldots$ |
$[]$ |
15210.k7 |
15210n3 |
15210.k |
15210n |
$8$ |
$12$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{12} \cdot 3^{7} \cdot 5^{3} \cdot 13^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.1, 3.4.0.1 |
2B, 3B |
$1560$ |
$384$ |
$5$ |
$1$ |
$1$ |
|
$1$ |
$110592$ |
$1.702799$ |
$-273359449/1536000$ |
$1.04920$ |
$4.54622$ |
$[1, -1, 0, -20565, 3719925]$ |
\(y^2+xy=x^3-x^2-20565x+3719925\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.48.0.c.1, $\ldots$ |
$[]$ |
15210.k8 |
15210n1 |
15210.k |
15210n |
$8$ |
$12$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{4} \cdot 3^{9} \cdot 5 \cdot 13^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.1, 3.4.0.1 |
2B, 3B |
$1560$ |
$384$ |
$5$ |
$1$ |
$1$ |
|
$1$ |
$36864$ |
$1.153494$ |
$357911/2160$ |
$0.99689$ |
$3.84364$ |
$[1, -1, 0, 2250, -126684]$ |
\(y^2+xy=x^3-x^2+2250x-126684\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.48.0.c.2, $\ldots$ |
$[]$ |
15210.l1 |
15210p1 |
15210.l |
15210p |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{5} \cdot 3^{10} \cdot 5 \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$53760$ |
$1.167408$ |
$-79370312059129/12960$ |
$1.18524$ |
$4.54081$ |
$[1, -1, 0, -44550, 3630420]$ |
\(y^2+xy=x^3-x^2-44550x+3630420\) |
40.2.0.a.1 |
$[]$ |
15210.m1 |
15210g1 |
15210.m |
15210g |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2 \cdot 3^{3} \cdot 5 \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$27456$ |
$0.863208$ |
$9477/10$ |
$0.73431$ |
$3.42399$ |
$[1, -1, 0, 1236, -15482]$ |
\(y^2+xy=x^3-x^2+1236x-15482\) |
120.2.0.? |
$[]$ |
15210.n1 |
15210c2 |
15210.n |
15210c |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( 2^{8} \cdot 3^{9} \cdot 5^{2} \cdot 13^{16} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5160960$ |
$3.670406$ |
$2034416504287874043/882294347833600$ |
$1.06294$ |
$7.00270$ |
$[1, -1, 0, -120454359, -254692165987]$ |
\(y^2+xy=x^3-x^2-120454359x-254692165987\) |
2.3.0.a.1, 12.6.0.a.1, 52.6.0.e.1, 156.12.0.? |
$[]$ |
15210.n2 |
15210c1 |
15210.n |
15210c |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{16} \cdot 3^{9} \cdot 5^{4} \cdot 13^{11} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$2580480$ |
$3.323833$ |
$19441890357117957/15208161280000$ |
$1.08681$ |
$6.51976$ |
$[1, -1, 0, 25561641, -29506290787]$ |
\(y^2+xy=x^3-x^2+25561641x-29506290787\) |
2.3.0.a.1, 12.6.0.b.1, 52.6.0.e.1, 78.6.0.?, 156.12.0.? |
$[]$ |
15210.o1 |
15210u4 |
15210.o |
15210u |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( 2^{15} \cdot 3^{12} \cdot 5 \cdot 13^{12} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$1560$ |
$96$ |
$1$ |
$11.85329435$ |
$1$ |
|
$0$ |
$5806080$ |
$3.837166$ |
$73474353581350183614361/576510977802240$ |
$1.05636$ |
$7.75024$ |
$[1, -1, 0, -1327190409, 18610273870605]$ |
\(y^2+xy=x^3-x^2-1327190409x+18610273870605\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.5, 39.8.0-3.a.1.1, $\ldots$ |
$[(-17754369/22, 45287438997/22)]$ |
15210.o2 |
15210u3 |
15210.o |
15210u |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{30} \cdot 3^{9} \cdot 5^{2} \cdot 13^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$1560$ |
$96$ |
$1$ |
$5.926647177$ |
$1$ |
|
$1$ |
$2903040$ |
$3.490593$ |
$-16818951115904497561/1592332281446400$ |
$1.03465$ |
$6.89553$ |
$[1, -1, 0, -81187209, 303745655565]$ |
\(y^2+xy=x^3-x^2-81187209x+303745655565\) |
2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.3, 39.8.0-3.a.1.1, 40.6.0.c.1, $\ldots$ |
$[(90549/4, 10041543/4)]$ |
15210.o3 |
15210u2 |
15210.o |
15210u |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( 2^{5} \cdot 3^{24} \cdot 5^{3} \cdot 13^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$1560$ |
$96$ |
$1$ |
$3.951098118$ |
$1$ |
|
$2$ |
$1935360$ |
$3.287861$ |
$453198971846635561/261896250564000$ |
$1.11183$ |
$6.50450$ |
$[1, -1, 0, -24339834, -1733847660]$ |
\(y^2+xy=x^3-x^2-24339834x-1733847660\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.11, 39.8.0-3.a.1.2, $\ldots$ |
$[(5041, 57897)]$ |
15210.o4 |
15210u1 |
15210.o |
15210u |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{10} \cdot 3^{15} \cdot 5^{6} \cdot 13^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$1560$ |
$96$ |
$1$ |
$1.975549059$ |
$1$ |
|
$7$ |
$967680$ |
$2.941288$ |
$7064514799444439/4094064000000$ |
$1.10261$ |
$6.07238$ |
$[1, -1, 0, 6080166, -218931660]$ |
\(y^2+xy=x^3-x^2+6080166x-218931660\) |
2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.1, 39.8.0-3.a.1.2, 40.6.0.c.1, $\ldots$ |
$[(2116, 147662)]$ |
15210.p1 |
15210d4 |
15210.p |
15210d |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( 2 \cdot 3^{9} \cdot 5^{6} \cdot 13^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$1560$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$103680$ |
$1.659992$ |
$57960603/31250$ |
$1.11205$ |
$4.48118$ |
$[1, -1, 0, -36789, -700777]$ |
\(y^2+xy=x^3-x^2-36789x-700777\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0.ca.1, 39.8.0-3.a.1.2, $\ldots$ |
$[]$ |
15210.p2 |
15210d2 |
15210.p |
15210d |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( 2^{3} \cdot 3^{3} \cdot 5^{2} \cdot 13^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$1560$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$34560$ |
$1.110687$ |
$8527173507/200$ |
$1.05154$ |
$4.31499$ |
$[1, -1, 0, -21579, 1225485]$ |
\(y^2+xy=x^3-x^2-21579x+1225485\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0.ca.1, 39.8.0-3.a.1.1, $\ldots$ |
$[]$ |
15210.p3 |
15210d1 |
15210.p |
15210d |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{6} \cdot 3^{3} \cdot 5 \cdot 13^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$1560$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$17280$ |
$0.764113$ |
$-1860867/320$ |
$0.97305$ |
$3.46659$ |
$[1, -1, 0, -1299, 20853]$ |
\(y^2+xy=x^3-x^2-1299x+20853\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0.cd.1, 30.24.0.b.1, $\ldots$ |
$[]$ |
15210.p4 |
15210d3 |
15210.p |
15210d |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{2} \cdot 3^{9} \cdot 5^{3} \cdot 13^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$1560$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$51840$ |
$1.313419$ |
$804357/500$ |
$1.08207$ |
$4.03699$ |
$[1, -1, 0, 8841, -89335]$ |
\(y^2+xy=x^3-x^2+8841x-89335\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0.cd.1, 30.24.0.b.1, $\ldots$ |
$[]$ |
15210.q1 |
15210w2 |
15210.q |
15210w |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( 2 \cdot 3^{8} \cdot 5 \cdot 13^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1560$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$199680$ |
$2.042458$ |
$16718302693/90$ |
$0.96871$ |
$5.52623$ |
$[1, -1, 0, -1053324, -415828490]$ |
\(y^2+xy=x^3-x^2-1053324x-415828490\) |
2.3.0.a.1, 120.6.0.?, 156.6.0.?, 520.6.0.?, 1560.12.0.? |
$[]$ |
15210.q2 |
15210w1 |
15210.q |
15210w |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{2} \cdot 3^{7} \cdot 5^{2} \cdot 13^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1560$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$99840$ |
$1.695883$ |
$-3869893/300$ |
$0.87964$ |
$4.66999$ |
$[1, -1, 0, -64674, -6725120]$ |
\(y^2+xy=x^3-x^2-64674x-6725120\) |
2.3.0.a.1, 78.6.0.?, 120.6.0.?, 520.6.0.?, 1560.12.0.? |
$[]$ |
15210.r1 |
15210x1 |
15210.r |
15210x |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( 2^{18} \cdot 3^{12} \cdot 5^{3} \cdot 13^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.6.0.1 |
2B, 3Ns |
$1560$ |
$144$ |
$5$ |
$1$ |
$1$ |
|
$1$ |
$207360$ |
$1.946749$ |
$570403428460237/23887872000$ |
$1.03085$ |
$5.01198$ |
$[1, -1, 0, -202149, 33743893]$ |
\(y^2+xy=x^3-x^2-202149x+33743893\) |
2.3.0.a.1, 3.6.0.b.1, 6.18.0.b.1, 24.36.0.c.1, 30.36.0.d.1, $\ldots$ |
$[]$ |
15210.r2 |
15210x2 |
15210.r |
15210x |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{9} \cdot 3^{18} \cdot 5^{6} \cdot 13^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.6.0.1 |
2B, 3Ns |
$1560$ |
$144$ |
$5$ |
$1$ |
$1$ |
|
$0$ |
$414720$ |
$2.293324$ |
$63745936931123/4251528000000$ |
$1.08920$ |
$5.27647$ |
$[1, -1, 0, 97371, 124977685]$ |
\(y^2+xy=x^3-x^2+97371x+124977685\) |
2.3.0.a.1, 3.6.0.b.1, 6.18.0.b.1, 24.36.0.f.1, 39.12.0.a.1, $\ldots$ |
$[]$ |
15210.s1 |
15210t1 |
15210.s |
15210t |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{11} \cdot 3^{17} \cdot 5^{7} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1.002332457$ |
$1$ |
|
$4$ |
$325248$ |
$2.246742$ |
$41689615345255319/28343520000000$ |
$1.06366$ |
$5.19129$ |
$[1, -1, 0, 359451, -34771307]$ |
\(y^2+xy=x^3-x^2+359451x-34771307\) |
120.2.0.? |
$[(167, 5384)]$ |
15210.t1 |
15210r1 |
15210.t |
15210r |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{9} \cdot 5 \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$4.385003700$ |
$1$ |
|
$2$ |
$194688$ |
$2.099762$ |
$-50308609/1105920$ |
$0.98509$ |
$5.03734$ |
$[1, -1, 0, -64674, 39543700]$ |
\(y^2+xy=x^3-x^2-64674x+39543700\) |
120.2.0.? |
$[(209, 5822)]$ |
15210.u1 |
15210s2 |
15210.u |
15210s |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( 2^{5} \cdot 3^{8} \cdot 5 \cdot 13^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1560$ |
$12$ |
$0$ |
$2.499662245$ |
$1$ |
|
$4$ |
$215040$ |
$2.083618$ |
$68523370149961/243360$ |
$0.97981$ |
$5.59099$ |
$[1, -1, 0, -1296684, 568650928]$ |
\(y^2+xy=x^3-x^2-1296684x+568650928\) |
2.3.0.a.1, 40.6.0.b.1, 156.6.0.?, 1560.12.0.? |
$[(659, -289)]$ |
15210.u2 |
15210s1 |
15210.u |
15210s |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{10} \cdot 3^{7} \cdot 5^{2} \cdot 13^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1560$ |
$12$ |
$0$ |
$1.249831122$ |
$1$ |
|
$7$ |
$107520$ |
$1.737043$ |
$-16022066761/998400$ |
$0.92192$ |
$4.73336$ |
$[1, -1, 0, -79884, 9166288]$ |
\(y^2+xy=x^3-x^2-79884x+9166288\) |
2.3.0.a.1, 40.6.0.c.1, 78.6.0.?, 1560.12.0.? |
$[(152, 644)]$ |
15210.v1 |
15210v3 |
15210.v |
15210v |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( 2^{12} \cdot 3^{6} \cdot 5 \cdot 13^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.3, 3.4.0.1 |
2B, 3B |
$1560$ |
$384$ |
$9$ |
$6.590730886$ |
$1$ |
|
$1$ |
$290304$ |
$2.062229$ |
$988345570681/44994560$ |
$0.95432$ |
$5.15080$ |
$[1, -1, 0, -315639, 65594205]$ |
\(y^2+xy=x^3-x^2-315639x+65594205\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$ |
$[(-9/2, 65151/2)]$ |
15210.v2 |
15210v1 |
15210.v |
15210v |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{6} \cdot 5^{3} \cdot 13^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.3, 3.4.0.1 |
2B, 3B |
$1560$ |
$384$ |
$9$ |
$2.196910295$ |
$1$ |
|
$5$ |
$96768$ |
$1.512924$ |
$3803721481/26000$ |
$0.90619$ |
$4.57341$ |
$[1, -1, 0, -49464, -4196880]$ |
\(y^2+xy=x^3-x^2-49464x-4196880\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$ |
$[(-129, 222)]$ |