Learn more

Refine search


Results (1-50 of 168 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
15680.a1 15680.a \( 2^{6} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $1.079636849$ $[0, 0, 0, 6272, 581728]$ \(y^2=x^3+6272x+581728\) 70.2.0.a.1
15680.b1 15680.b \( 2^{6} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.403373647$ $[0, 0, 0, -8428, 297808]$ \(y^2=x^3-8428x+297808\) 7.24.0.a.2, 20.2.0.a.1, 56.48.0-7.a.2.2, 140.48.2.?, 280.96.2.?
15680.b2 15680.b \( 2^{6} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $2.823615529$ $[0, 0, 0, 58772, -2825648]$ \(y^2=x^3+58772x-2825648\) 7.24.0.a.1, 20.2.0.a.1, 56.48.0-7.a.1.2, 140.48.2.?, 280.96.2.?
15680.c1 15680.c \( 2^{6} \cdot 5 \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 366422, 83755798]$ \(y^2=x^3+366422x+83755798\) 70.2.0.a.1
15680.d1 15680.d \( 2^{6} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $1.376941776$ $[0, 0, 0, -28, -98]$ \(y^2=x^3-28x-98\) 3.3.0.a.1, 21.6.0.a.1, 30.6.0.c.1, 70.2.0.a.1, 210.12.1.?
15680.e1 15680.e \( 2^{6} \cdot 5 \cdot 7^{2} \) $2$ $\mathsf{trivial}$ $0.488061329$ $[0, 0, 0, -28, 112]$ \(y^2=x^3-28x+112\) 20.2.0.a.1
15680.f1 15680.f \( 2^{6} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.667912705$ $[0, 0, 0, -1372, 38416]$ \(y^2=x^3-1372x+38416\) 20.2.0.a.1
15680.g1 15680.g \( 2^{6} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $1.149743043$ $[0, 0, 0, -1372, -33614]$ \(y^2=x^3-1372x-33614\) 3.3.0.a.1, 21.6.0.a.1, 30.6.0.c.1, 70.2.0.a.1, 210.12.1.?
15680.h1 15680.h \( 2^{6} \cdot 5 \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -412972, 102148144]$ \(y^2=x^3-412972x+102148144\) 7.24.0.a.2, 20.2.0.a.1, 56.48.0-7.a.2.3, 140.48.2.?, 280.96.2.?
15680.h2 15680.h \( 2^{6} \cdot 5 \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 2879828, -969197264]$ \(y^2=x^3+2879828x-969197264\) 7.24.0.a.1, 20.2.0.a.1, 56.48.0-7.a.1.3, 140.48.2.?, 280.96.2.?
15680.i1 15680.i \( 2^{6} \cdot 5 \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 98, -686]$ \(y^2=x^3+98x-686\) 70.2.0.a.1
15680.j1 15680.j \( 2^{6} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $1.158734168$ $[0, 0, 0, -80752, -9099104]$ \(y^2=x^3-80752x-9099104\) 70.2.0.a.1
15680.k1 15680.k \( 2^{6} \cdot 5 \cdot 7^{2} \) $2$ $\Z/2\Z$ $1.084290168$ $[0, 1, 0, -961, 7839]$ \(y^2=x^3+x^2-961x+7839\) 2.3.0.a.1, 8.6.0.e.1, 28.6.0.c.1, 56.12.0.bd.1
15680.k2 15680.k \( 2^{6} \cdot 5 \cdot 7^{2} \) $2$ $\Z/2\Z$ $1.084290168$ $[0, 1, 0, 159, 895]$ \(y^2=x^3+x^2+159x+895\) 2.3.0.a.1, 8.6.0.e.1, 14.6.0.b.1, 56.12.0.bc.1
15680.l1 15680.l \( 2^{6} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.258586468$ $[0, 1, 0, -3201, 82879]$ \(y^2=x^3+x^2-3201x+82879\) 40.2.0.a.1
15680.m1 15680.m \( 2^{6} \cdot 5 \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -1539841, 734980959]$ \(y^2=x^3+x^2-1539841x+734980959\) 3.4.0.a.1, 40.2.0.a.1, 120.8.0.?, 168.8.0.?, 420.8.0.?, $\ldots$
15680.m2 15680.m \( 2^{6} \cdot 5 \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -3201, 2618335]$ \(y^2=x^3+x^2-3201x+2618335\) 3.4.0.a.1, 40.2.0.a.1, 120.8.0.?, 168.8.0.?, 420.8.0.?, $\ldots$
15680.n1 15680.n \( 2^{6} \cdot 5 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -8101, 277899]$ \(y^2=x^3+x^2-8101x+277899\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 10.6.0.a.1, $\ldots$
15680.n2 15680.n \( 2^{6} \cdot 5 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -7121, 348655]$ \(y^2=x^3+x^2-7121x+348655\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$
15680.n3 15680.n \( 2^{6} \cdot 5 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -261, -1205]$ \(y^2=x^3+x^2-261x-1205\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 10.6.0.a.1, $\ldots$
15680.n4 15680.n \( 2^{6} \cdot 5 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 719, -7281]$ \(y^2=x^3+x^2+719x-7281\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$
15680.o1 15680.o \( 2^{6} \cdot 5 \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -961, -13665]$ \(y^2=x^3+x^2-961x-13665\) 40.2.0.a.1
15680.p1 15680.p \( 2^{6} \cdot 5 \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -497121, 234102175]$ \(y^2=x^3+x^2-497121x+234102175\) 3.4.0.a.1, 24.8.0-3.a.1.3, 30.8.0-3.a.1.2, 40.2.0.a.1, 120.16.0.?
15680.p2 15680.p \( 2^{6} \cdot 5 \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 51679, -5942945]$ \(y^2=x^3+x^2+51679x-5942945\) 3.4.0.a.1, 24.8.0-3.a.1.4, 30.8.0-3.a.1.1, 40.2.0.a.1, 120.16.0.?
15680.q1 15680.q \( 2^{6} \cdot 5 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -1241, -17081]$ \(y^2=x^3+x^2-1241x-17081\) 2.3.0.a.1, 4.6.0.b.1, 10.6.0.a.1, 20.12.0.e.1, 40.24.0.br.1, $\ldots$
15680.q2 15680.q \( 2^{6} \cdot 5 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -16, -666]$ \(y^2=x^3+x^2-16x-666\) 2.3.0.a.1, 4.6.0.a.1, 20.12.0.d.1, 28.12.0-4.a.1.1, 40.24.0.t.1, $\ldots$
15680.r1 15680.r \( 2^{6} \cdot 5 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -3735041, -2779534241]$ \(y^2=x^3+x^2-3735041x-2779534241\) 2.3.0.a.1, 8.6.0.e.1, 28.6.0.c.1, 56.12.0.bd.1
15680.r2 15680.r \( 2^{6} \cdot 5 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -222721, -47651745]$ \(y^2=x^3+x^2-222721x-47651745\) 2.3.0.a.1, 8.6.0.e.1, 14.6.0.b.1, 56.12.0.bc.1
15680.s1 15680.s \( 2^{6} \cdot 5 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -76225, -8125377]$ \(y^2=x^3+x^2-76225x-8125377\) 2.3.0.a.1, 8.6.0.e.1, 28.6.0.c.1, 56.12.0.bd.1
15680.s2 15680.s \( 2^{6} \cdot 5 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -4545, -140225]$ \(y^2=x^3+x^2-4545x-140225\) 2.3.0.a.1, 8.6.0.e.1, 14.6.0.b.1, 56.12.0.bc.1
15680.t1 15680.t \( 2^{6} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $1.602375902$ $[0, 1, 0, -10145, 679615]$ \(y^2=x^3+x^2-10145x+679615\) 3.4.0.a.1, 40.2.0.a.1, 120.8.0.?, 168.8.0.?, 420.8.0.?, $\ldots$
15680.t2 15680.t \( 2^{6} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.534125300$ $[0, 1, 0, 1055, -17025]$ \(y^2=x^3+x^2+1055x-17025\) 3.4.0.a.1, 40.2.0.a.1, 120.8.0.?, 168.8.0.?, 420.8.0.?, $\ldots$
15680.u1 15680.u \( 2^{6} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.348388343$ $[0, 1, 0, -47105, -4592897]$ \(y^2=x^3+x^2-47105x-4592897\) 40.2.0.a.1
15680.v1 15680.v \( 2^{6} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.309828813$ $[0, 1, 0, -31425, 2133823]$ \(y^2=x^3+x^2-31425x+2133823\) 3.4.0.a.1, 24.8.0-3.a.1.3, 30.8.0-3.a.1.2, 40.2.0.a.1, 120.16.0.?
15680.v2 15680.v \( 2^{6} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.929486440$ $[0, 1, 0, -65, 7615]$ \(y^2=x^3+x^2-65x+7615\) 3.4.0.a.1, 24.8.0-3.a.1.4, 30.8.0-3.a.1.1, 40.2.0.a.1, 120.16.0.?
15680.w1 15680.w \( 2^{6} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.418157205$ $[0, 1, 0, -65, 223]$ \(y^2=x^3+x^2-65x+223\) 40.2.0.a.1
15680.x1 15680.x \( 2^{6} \cdot 5 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -47105, 2782975]$ \(y^2=x^3+x^2-47105x+2782975\) 2.3.0.a.1, 8.6.0.e.1, 28.6.0.c.1, 56.12.0.bd.1
15680.x2 15680.x \( 2^{6} \cdot 5 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 7775, 291423]$ \(y^2=x^3+x^2+7775x+291423\) 2.3.0.a.1, 8.6.0.e.1, 14.6.0.b.1, 56.12.0.bc.1
15680.y1 15680.y \( 2^{6} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $1.901030784$ $[0, -1, 0, -2081, -38975]$ \(y^2=x^3-x^2-2081x-38975\) 3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 168.8.0.?, 840.16.0.?
15680.y2 15680.y \( 2^{6} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.633676928$ $[0, -1, 0, 159, 1]$ \(y^2=x^3-x^2+159x+1\) 3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 168.8.0.?, 840.16.0.?
15680.z1 15680.z \( 2^{6} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $2.114703084$ $[0, -1, 0, -23781, 1422205]$ \(y^2=x^3-x^2-23781x+1422205\) 70.2.0.a.1
15680.ba1 15680.ba \( 2^{6} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $8.818000958$ $[0, -1, 0, -25741, -1654309]$ \(y^2=x^3-x^2-25741x-1654309\) 3.4.0.a.1, 9.12.0.a.1, 63.36.0.e.2, 70.2.0.a.1, 120.8.0.?, $\ldots$
15680.ba2 15680.ba \( 2^{6} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.979777884$ $[0, -1, 0, -261, 1891]$ \(y^2=x^3-x^2-261x+1891\) 3.4.0.a.1, 9.12.0.a.1, 63.36.0.e.1, 70.2.0.a.1, 120.8.0.?, $\ldots$
15680.ba3 15680.ba \( 2^{6} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $2.939333652$ $[0, -1, 0, 1699, -5165]$ \(y^2=x^3-x^2+1699x-5165\) 3.12.0.a.1, 63.36.0.b.1, 70.2.0.a.1, 120.24.0.?, 168.24.0.?, $\ldots$
15680.bb1 15680.bb \( 2^{6} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $3.392983684$ $[0, -1, 0, 3659, -21139]$ \(y^2=x^3-x^2+3659x-21139\) 70.2.0.a.1
15680.bc1 15680.bc \( 2^{6} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.604705206$ $[0, -1, 0, -3691, 87641]$ \(y^2=x^3-x^2-3691x+87641\) 70.2.0.a.1
15680.bd1 15680.bd \( 2^{6} \cdot 5 \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -751, -9379]$ \(y^2=x^3-x^2-751x-9379\) 70.2.0.a.1
15680.be1 15680.be \( 2^{6} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $3.270796252$ $[0, -1, 0, -3201, -467039]$ \(y^2=x^3-x^2-3201x-467039\) 20.2.0.a.1
15680.bf1 15680.bf \( 2^{6} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $3.227459678$ $[0, -1, 0, -16, -34]$ \(y^2=x^3-x^2-16x-34\) 20.2.0.a.1
15680.bg1 15680.bg \( 2^{6} \cdot 5 \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 159, 4705]$ \(y^2=x^3-x^2+159x+4705\) 20.2.0.a.1
Next   displayed columns for results