Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
15680.a1 |
15680cx1 |
15680.a |
15680cx |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{14} \cdot 5 \cdot 7^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$1.079636849$ |
$1$ |
|
$2$ |
$92160$ |
$1.408463$ |
$14155776/84035$ |
$1.21697$ |
$4.14804$ |
$[0, 0, 0, 6272, 581728]$ |
\(y^2=x^3+6272x+581728\) |
70.2.0.a.1 |
$[(161, 2401)]$ |
15680.b1 |
15680cw1 |
15680.b |
15680cw |
$2$ |
$7$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{20} \cdot 5 \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$280$ |
$96$ |
$2$ |
$0.403373647$ |
$1$ |
|
$4$ |
$23040$ |
$0.826897$ |
$-5154200289/20$ |
$1.12200$ |
$4.00942$ |
$[0, 0, 0, -8428, 297808]$ |
\(y^2=x^3-8428x+297808\) |
7.24.0.a.2, 20.2.0.a.1, 56.48.0-7.a.2.2, 140.48.2.?, 280.96.2.? |
$[(58, 64)]$ |
15680.b2 |
15680cw2 |
15680.b |
15680cw |
$2$ |
$7$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{32} \cdot 5^{7} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.1 |
7B.6.1 |
$280$ |
$96$ |
$2$ |
$2.823615529$ |
$1$ |
|
$2$ |
$161280$ |
$1.799852$ |
$1747829720511/1280000000$ |
$1.08633$ |
$4.61255$ |
$[0, 0, 0, 58772, -2825648]$ |
\(y^2=x^3+58772x-2825648\) |
7.24.0.a.1, 20.2.0.a.1, 56.48.0-7.a.1.2, 140.48.2.?, 280.96.2.? |
$[(1402, 53248)]$ |
15680.c1 |
15680bc1 |
15680.c |
15680bc |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{6} \cdot 5^{11} \cdot 7^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$506880$ |
$2.292057$ |
$722603599520256/820654296875$ |
$1.08491$ |
$5.18090$ |
$[0, 0, 0, 366422, 83755798]$ |
\(y^2=x^3+366422x+83755798\) |
70.2.0.a.1 |
$[]$ |
15680.d1 |
15680cv1 |
15680.d |
15680cv |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{6} \cdot 5^{3} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.3.0.1 |
3Nn |
$210$ |
$12$ |
$1$ |
$1.376941776$ |
$1$ |
|
$2$ |
$3840$ |
$-0.070187$ |
$-110592/125$ |
$0.98030$ |
$2.34915$ |
$[0, 0, 0, -28, -98]$ |
\(y^2=x^3-28x-98\) |
3.3.0.a.1, 21.6.0.a.1, 30.6.0.c.1, 70.2.0.a.1, 210.12.1.? |
$[(7, 7)]$ |
15680.e1 |
15680bd1 |
15680.e |
15680bd |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{14} \cdot 5 \cdot 7^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$0.488061329$ |
$1$ |
|
$14$ |
$4608$ |
$-0.042013$ |
$-3024/5$ |
$0.61638$ |
$2.37679$ |
$[0, 0, 0, -28, 112]$ |
\(y^2=x^3-28x+112\) |
20.2.0.a.1 |
$[(2, 8), (-6, 8)]$ |
15680.f1 |
15680dh1 |
15680.f |
15680dh |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{14} \cdot 5 \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$0.667912705$ |
$1$ |
|
$4$ |
$32256$ |
$0.930943$ |
$-3024/5$ |
$0.61638$ |
$3.58541$ |
$[0, 0, 0, -1372, 38416]$ |
\(y^2=x^3-1372x+38416\) |
20.2.0.a.1 |
$[(0, 196)]$ |
15680.g1 |
15680by1 |
15680.g |
15680by |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{6} \cdot 5^{3} \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.3.0.1 |
3Nn |
$210$ |
$12$ |
$1$ |
$1.149743043$ |
$1$ |
|
$2$ |
$26880$ |
$0.902768$ |
$-110592/125$ |
$0.98030$ |
$3.55777$ |
$[0, 0, 0, -1372, -33614]$ |
\(y^2=x^3-1372x-33614\) |
3.3.0.a.1, 21.6.0.a.1, 30.6.0.c.1, 70.2.0.a.1, 210.12.1.? |
$[(147, 1715)]$ |
15680.h1 |
15680bl1 |
15680.h |
15680bl |
$2$ |
$7$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{20} \cdot 5 \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$280$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$161280$ |
$1.799852$ |
$-5154200289/20$ |
$1.12200$ |
$5.21804$ |
$[0, 0, 0, -412972, 102148144]$ |
\(y^2=x^3-412972x+102148144\) |
7.24.0.a.2, 20.2.0.a.1, 56.48.0-7.a.2.3, 140.48.2.?, 280.96.2.? |
$[]$ |
15680.h2 |
15680bl2 |
15680.h |
15680bl |
$2$ |
$7$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{32} \cdot 5^{7} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.1 |
7B.6.1 |
$280$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$1128960$ |
$2.772808$ |
$1747829720511/1280000000$ |
$1.08633$ |
$5.82117$ |
$[0, 0, 0, 2879828, -969197264]$ |
\(y^2=x^3+2879828x-969197264\) |
7.24.0.a.1, 20.2.0.a.1, 56.48.0-7.a.1.3, 140.48.2.?, 280.96.2.? |
$[]$ |
15680.i1 |
15680dx1 |
15680.i |
15680dx |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{6} \cdot 5 \cdot 7^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$9216$ |
$0.299598$ |
$13824/35$ |
$0.66491$ |
$2.75202$ |
$[0, 0, 0, 98, -686]$ |
\(y^2=x^3+98x-686\) |
70.2.0.a.1 |
$[]$ |
15680.j1 |
15680bz1 |
15680.j |
15680bz |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{14} \cdot 5^{5} \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$1.158734168$ |
$1$ |
|
$4$ |
$184320$ |
$1.710999$ |
$-30211716096/1071875$ |
$1.00205$ |
$4.71738$ |
$[0, 0, 0, -80752, -9099104]$ |
\(y^2=x^3-80752x-9099104\) |
70.2.0.a.1 |
$[(497, 8575)]$ |
15680.k1 |
15680x2 |
15680.k |
15680x |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( 2^{17} \cdot 5^{4} \cdot 7^{3} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.3 |
2B |
$56$ |
$12$ |
$0$ |
$1.084290168$ |
$1$ |
|
$21$ |
$12288$ |
$0.711469$ |
$2185454/625$ |
$0.89014$ |
$3.33521$ |
$[0, 1, 0, -961, 7839]$ |
\(y^2=x^3+x^2-961x+7839\) |
2.3.0.a.1, 8.6.0.e.1, 28.6.0.c.1, 56.12.0.bd.1 |
$[(-5, 112), (27, 48)]$ |
15680.k2 |
15680x1 |
15680.k |
15680x |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{16} \cdot 5^{2} \cdot 7^{3} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.3 |
2B |
$56$ |
$12$ |
$0$ |
$1.084290168$ |
$1$ |
|
$21$ |
$6144$ |
$0.364895$ |
$19652/25$ |
$0.80426$ |
$2.79446$ |
$[0, 1, 0, 159, 895]$ |
\(y^2=x^3+x^2+159x+895\) |
2.3.0.a.1, 8.6.0.e.1, 14.6.0.b.1, 56.12.0.bc.1 |
$[(2, 35), (-3, 20)]$ |
15680.l1 |
15680c1 |
15680.l |
15680c |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{15} \cdot 5 \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$0.258586468$ |
$1$ |
|
$6$ |
$18816$ |
$1.014845$ |
$-19208/5$ |
$0.86529$ |
$3.74725$ |
$[0, 1, 0, -3201, 82879]$ |
\(y^2=x^3+x^2-3201x+82879\) |
40.2.0.a.1 |
$[(-33, 392)]$ |
15680.m1 |
15680u2 |
15680.m |
15680u |
$2$ |
$3$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{19} \cdot 5^{3} \cdot 7^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$241920$ |
$2.197063$ |
$-5452947409/250$ |
$0.98622$ |
$5.62676$ |
$[0, 1, 0, -1539841, 734980959]$ |
\(y^2=x^3+x^2-1539841x+734980959\) |
3.4.0.a.1, 40.2.0.a.1, 120.8.0.?, 168.8.0.?, 420.8.0.?, $\ldots$ |
$[]$ |
15680.m2 |
15680u1 |
15680.m |
15680u |
$2$ |
$3$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{21} \cdot 5 \cdot 7^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$80640$ |
$1.647758$ |
$-49/40$ |
$1.02061$ |
$4.45957$ |
$[0, 1, 0, -3201, 2618335]$ |
\(y^2=x^3+x^2-3201x+2618335\) |
3.4.0.a.1, 40.2.0.a.1, 120.8.0.?, 168.8.0.?, 420.8.0.?, $\ldots$ |
$[]$ |
15680.n1 |
15680s3 |
15680.n |
15680s |
$4$ |
$6$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( 2^{10} \cdot 5^{3} \cdot 7^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.3, 3.4.0.1 |
2B, 3B |
$840$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$1$ |
$17280$ |
$0.938885$ |
$488095744/125$ |
$1.07376$ |
$3.99714$ |
$[0, 1, 0, -8101, 277899]$ |
\(y^2=x^3+x^2-8101x+277899\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 10.6.0.a.1, $\ldots$ |
$[]$ |
15680.n2 |
15680s4 |
15680.n |
15680s |
$4$ |
$6$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{14} \cdot 5^{6} \cdot 7^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.5, 3.4.0.1 |
2B, 3B |
$840$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$1$ |
$34560$ |
$1.285458$ |
$-20720464/15625$ |
$0.95894$ |
$4.04346$ |
$[0, 1, 0, -7121, 348655]$ |
\(y^2=x^3+x^2-7121x+348655\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ |
$[]$ |
15680.n3 |
15680s1 |
15680.n |
15680s |
$4$ |
$6$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( 2^{10} \cdot 5 \cdot 7^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.3, 3.4.0.1 |
2B, 3B |
$840$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$1$ |
$5760$ |
$0.389578$ |
$16384/5$ |
$0.95621$ |
$2.93070$ |
$[0, 1, 0, -261, -1205]$ |
\(y^2=x^3+x^2-261x-1205\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 10.6.0.a.1, $\ldots$ |
$[]$ |
15680.n4 |
15680s2 |
15680.n |
15680s |
$4$ |
$6$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{14} \cdot 5^{2} \cdot 7^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.5, 3.4.0.1 |
2B, 3B |
$840$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$1$ |
$11520$ |
$0.736152$ |
$21296/25$ |
$0.83964$ |
$3.24777$ |
$[0, 1, 0, 719, -7281]$ |
\(y^2=x^3+x^2+719x-7281\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ |
$[]$ |
15680.o1 |
15680t1 |
15680.o |
15680t |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{17} \cdot 5^{5} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11520$ |
$0.699161$ |
$-15298178/3125$ |
$0.89447$ |
$3.36650$ |
$[0, 1, 0, -961, -13665]$ |
\(y^2=x^3+x^2-961x-13665\) |
40.2.0.a.1 |
$[]$ |
15680.p1 |
15680ca2 |
15680.p |
15680ca |
$2$ |
$3$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{39} \cdot 5 \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$338688$ |
$2.378201$ |
$-8990558521/10485760$ |
$0.98658$ |
$5.38989$ |
$[0, 1, 0, -497121, 234102175]$ |
\(y^2=x^3+x^2-497121x+234102175\) |
3.4.0.a.1, 24.8.0-3.a.1.3, 30.8.0-3.a.1.2, 40.2.0.a.1, 120.16.0.? |
$[]$ |
15680.p2 |
15680ca1 |
15680.p |
15680ca |
$2$ |
$3$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{25} \cdot 5^{3} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$112896$ |
$1.828896$ |
$10100279/16000$ |
$0.93051$ |
$4.62978$ |
$[0, 1, 0, 51679, -5942945]$ |
\(y^2=x^3+x^2+51679x-5942945\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 30.8.0-3.a.1.1, 40.2.0.a.1, 120.16.0.? |
$[]$ |
15680.q1 |
15680w2 |
15680.q |
15680w |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( 2^{12} \cdot 5 \cdot 7^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$280$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$11520$ |
$0.613483$ |
$438976/5$ |
$0.87813$ |
$3.41459$ |
$[0, 1, 0, -1241, -17081]$ |
\(y^2=x^3+x^2-1241x-17081\) |
2.3.0.a.1, 4.6.0.b.1, 10.6.0.a.1, 20.12.0.e.1, 40.24.0.br.1, $\ldots$ |
$[]$ |
15680.q2 |
15680w1 |
15680.q |
15680w |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{6} \cdot 5^{2} \cdot 7^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$280$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$5760$ |
$0.266910$ |
$-64/25$ |
$1.09219$ |
$2.74421$ |
$[0, 1, 0, -16, -666]$ |
\(y^2=x^3+x^2-16x-666\) |
2.3.0.a.1, 4.6.0.a.1, 20.12.0.d.1, 28.12.0-4.a.1.1, 40.24.0.t.1, $\ldots$ |
$[]$ |
15680.r1 |
15680v2 |
15680.r |
15680v |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( 2^{23} \cdot 5^{4} \cdot 7^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.3 |
2B |
$56$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$430080$ |
$2.412052$ |
$544737993463/20000$ |
$1.00483$ |
$5.90192$ |
$[0, 1, 0, -3735041, -2779534241]$ |
\(y^2=x^3+x^2-3735041x-2779534241\) |
2.3.0.a.1, 8.6.0.e.1, 28.6.0.c.1, 56.12.0.bd.1 |
$[]$ |
15680.r2 |
15680v1 |
15680.r |
15680v |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{28} \cdot 5^{2} \cdot 7^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.3 |
2B |
$56$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$215040$ |
$2.065479$ |
$-115501303/25600$ |
$0.94412$ |
$5.05985$ |
$[0, 1, 0, -222721, -47651745]$ |
\(y^2=x^3+x^2-222721x-47651745\) |
2.3.0.a.1, 8.6.0.e.1, 14.6.0.b.1, 56.12.0.bc.1 |
$[]$ |
15680.s1 |
15680dt2 |
15680.s |
15680dt |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( 2^{23} \cdot 5^{4} \cdot 7^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.3 |
2B |
$56$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$61440$ |
$1.439096$ |
$544737993463/20000$ |
$1.00483$ |
$4.69330$ |
$[0, 1, 0, -76225, -8125377]$ |
\(y^2=x^3+x^2-76225x-8125377\) |
2.3.0.a.1, 8.6.0.e.1, 28.6.0.c.1, 56.12.0.bd.1 |
$[]$ |
15680.s2 |
15680dt1 |
15680.s |
15680dt |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{28} \cdot 5^{2} \cdot 7^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.3 |
2B |
$56$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$30720$ |
$1.092524$ |
$-115501303/25600$ |
$0.94412$ |
$3.85123$ |
$[0, 1, 0, -4545, -140225]$ |
\(y^2=x^3+x^2-4545x-140225\) |
2.3.0.a.1, 8.6.0.e.1, 14.6.0.b.1, 56.12.0.bc.1 |
$[]$ |
15680.t1 |
15680bx2 |
15680.t |
15680bx |
$2$ |
$3$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{39} \cdot 5 \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$1.602375902$ |
$1$ |
|
$0$ |
$48384$ |
$1.405247$ |
$-8990558521/10485760$ |
$0.98658$ |
$4.18127$ |
$[0, 1, 0, -10145, 679615]$ |
\(y^2=x^3+x^2-10145x+679615\) |
3.4.0.a.1, 40.2.0.a.1, 120.8.0.?, 168.8.0.?, 420.8.0.?, $\ldots$ |
$[(1147/3, 32768/3)]$ |
15680.t2 |
15680bx1 |
15680.t |
15680bx |
$2$ |
$3$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{25} \cdot 5^{3} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$0.534125300$ |
$1$ |
|
$4$ |
$16128$ |
$0.855941$ |
$10100279/16000$ |
$0.93051$ |
$3.42116$ |
$[0, 1, 0, 1055, -17025]$ |
\(y^2=x^3+x^2+1055x-17025\) |
3.4.0.a.1, 40.2.0.a.1, 120.8.0.?, 168.8.0.?, 420.8.0.?, $\ldots$ |
$[(115, 1280)]$ |
15680.u1 |
15680de1 |
15680.u |
15680de |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{17} \cdot 5^{5} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$0.348388343$ |
$1$ |
|
$6$ |
$80640$ |
$1.672115$ |
$-15298178/3125$ |
$0.89447$ |
$4.57512$ |
$[0, 1, 0, -47105, -4592897]$ |
\(y^2=x^3+x^2-47105x-4592897\) |
40.2.0.a.1 |
$[(751, 19600)]$ |
15680.v1 |
15680df2 |
15680.v |
15680df |
$2$ |
$3$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{19} \cdot 5^{3} \cdot 7^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$0.309828813$ |
$1$ |
|
$6$ |
$34560$ |
$1.224110$ |
$-5452947409/250$ |
$0.98622$ |
$4.41813$ |
$[0, 1, 0, -31425, 2133823]$ |
\(y^2=x^3+x^2-31425x+2133823\) |
3.4.0.a.1, 24.8.0-3.a.1.3, 30.8.0-3.a.1.2, 40.2.0.a.1, 120.16.0.? |
$[(111, 160)]$ |
15680.v2 |
15680df1 |
15680.v |
15680df |
$2$ |
$3$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{21} \cdot 5 \cdot 7^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$0.929486440$ |
$1$ |
|
$4$ |
$11520$ |
$0.674803$ |
$-49/40$ |
$1.02061$ |
$3.25095$ |
$[0, 1, 0, -65, 7615]$ |
\(y^2=x^3+x^2-65x+7615\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 30.8.0-3.a.1.1, 40.2.0.a.1, 120.16.0.? |
$[(-17, 64)]$ |
15680.w1 |
15680bw1 |
15680.w |
15680bw |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{15} \cdot 5 \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$0.418157205$ |
$1$ |
|
$4$ |
$2688$ |
$0.041889$ |
$-19208/5$ |
$0.86529$ |
$2.53863$ |
$[0, 1, 0, -65, 223]$ |
\(y^2=x^3+x^2-65x+223\) |
40.2.0.a.1 |
$[(3, 8)]$ |
15680.x1 |
15680ds2 |
15680.x |
15680ds |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( 2^{17} \cdot 5^{4} \cdot 7^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.3 |
2B |
$56$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$86016$ |
$1.684423$ |
$2185454/625$ |
$0.89014$ |
$4.54383$ |
$[0, 1, 0, -47105, 2782975]$ |
\(y^2=x^3+x^2-47105x+2782975\) |
2.3.0.a.1, 8.6.0.e.1, 28.6.0.c.1, 56.12.0.bd.1 |
$[]$ |
15680.x2 |
15680ds1 |
15680.x |
15680ds |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{16} \cdot 5^{2} \cdot 7^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.3 |
2B |
$56$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$43008$ |
$1.337851$ |
$19652/25$ |
$0.80426$ |
$4.00308$ |
$[0, 1, 0, 7775, 291423]$ |
\(y^2=x^3+x^2+7775x+291423\) |
2.3.0.a.1, 8.6.0.e.1, 14.6.0.b.1, 56.12.0.bc.1 |
$[]$ |
15680.y1 |
15680co2 |
15680.y |
15680co |
$2$ |
$3$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{24} \cdot 5^{3} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$1.901030784$ |
$1$ |
|
$2$ |
$13824$ |
$0.852431$ |
$-77626969/8000$ |
$0.92025$ |
$3.59206$ |
$[0, -1, 0, -2081, -38975]$ |
\(y^2=x^3-x^2-2081x-38975\) |
3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 168.8.0.?, 840.16.0.? |
$[(125, 1280)]$ |
15680.y2 |
15680co1 |
15680.y |
15680co |
$2$ |
$3$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{20} \cdot 5 \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$0.633676928$ |
$1$ |
|
$4$ |
$4608$ |
$0.303125$ |
$34391/20$ |
$0.97256$ |
$2.77574$ |
$[0, -1, 0, 159, 1]$ |
\(y^2=x^3-x^2+159x+1\) |
3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 168.8.0.?, 840.16.0.? |
$[(13, 64)]$ |
15680.z1 |
15680cm1 |
15680.z |
15680cm |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{14} \cdot 5 \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$2.114703084$ |
$1$ |
|
$2$ |
$43008$ |
$1.284971$ |
$-2249728/5$ |
$0.86008$ |
$4.33197$ |
$[0, -1, 0, -23781, 1422205]$ |
\(y^2=x^3-x^2-23781x+1422205\) |
70.2.0.a.1 |
$[(180, 1715)]$ |
15680.ba1 |
15680cl3 |
15680.ba |
15680cl |
$3$ |
$9$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{6} \cdot 5^{9} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$2520$ |
$144$ |
$3$ |
$8.818000958$ |
$1$ |
|
$0$ |
$41472$ |
$1.446991$ |
$-250523582464/13671875$ |
$1.02112$ |
$4.36549$ |
$[0, -1, 0, -25741, -1654309]$ |
\(y^2=x^3-x^2-25741x-1654309\) |
3.4.0.a.1, 9.12.0.a.1, 63.36.0.e.2, 70.2.0.a.1, 120.8.0.?, $\ldots$ |
$[(31526/13, 52675/13)]$ |
15680.ba2 |
15680cl1 |
15680.ba |
15680cl |
$3$ |
$9$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{6} \cdot 5 \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$2520$ |
$144$ |
$3$ |
$0.979777884$ |
$1$ |
|
$2$ |
$4608$ |
$0.348379$ |
$-262144/35$ |
$0.88715$ |
$2.95219$ |
$[0, -1, 0, -261, 1891]$ |
\(y^2=x^3-x^2-261x+1891\) |
3.4.0.a.1, 9.12.0.a.1, 63.36.0.e.1, 70.2.0.a.1, 120.8.0.?, $\ldots$ |
$[(-2, 49)]$ |
15680.ba3 |
15680cl2 |
15680.ba |
15680cl |
$3$ |
$9$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{6} \cdot 5^{3} \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$2520$ |
$144$ |
$3$ |
$2.939333652$ |
$1$ |
|
$2$ |
$13824$ |
$0.897685$ |
$71991296/42875$ |
$1.06493$ |
$3.51200$ |
$[0, -1, 0, 1699, -5165]$ |
\(y^2=x^3-x^2+1699x-5165\) |
3.12.0.a.1, 63.36.0.b.1, 70.2.0.a.1, 120.24.0.?, 168.24.0.?, $\ldots$ |
$[(110, 1225)]$ |
15680.bb1 |
15680ch1 |
15680.bb |
15680ch |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{14} \cdot 5 \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$3.392983684$ |
$1$ |
|
$0$ |
$21504$ |
$1.091417$ |
$8192/5$ |
$0.91737$ |
$3.75027$ |
$[0, -1, 0, 3659, -21139]$ |
\(y^2=x^3-x^2+3659x-21139\) |
70.2.0.a.1 |
$[(52/3, 343/3)]$ |
15680.bc1 |
15680cg1 |
15680.bc |
15680cg |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{6} \cdot 5^{3} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$0.604705206$ |
$1$ |
|
$2$ |
$9216$ |
$0.795604$ |
$-738763264/875$ |
$0.89330$ |
$3.75324$ |
$[0, -1, 0, -3691, 87641]$ |
\(y^2=x^3-x^2-3691x+87641\) |
70.2.0.a.1 |
$[(40, 49)]$ |
15680.bd1 |
15680o1 |
15680.bd |
15680o |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{6} \cdot 5 \cdot 7^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$9216$ |
$0.655989$ |
$-6229504/1715$ |
$0.82351$ |
$3.29895$ |
$[0, -1, 0, -751, -9379]$ |
\(y^2=x^3-x^2-751x-9379\) |
70.2.0.a.1 |
$[]$ |
15680.be1 |
15680ci1 |
15680.be |
15680ci |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{16} \cdot 5 \cdot 7^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$3.270796252$ |
$1$ |
|
$2$ |
$32256$ |
$1.360523$ |
$-196/5$ |
$0.83724$ |
$4.10305$ |
$[0, -1, 0, -3201, -467039]$ |
\(y^2=x^3-x^2-3201x-467039\) |
20.2.0.a.1 |
$[(93, 176)]$ |
15680.bf1 |
15680cj1 |
15680.bf |
15680cj |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{6} \cdot 5^{3} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$3.227459678$ |
$1$ |
|
$2$ |
$1152$ |
$-0.228600$ |
$-153664/125$ |
$1.04461$ |
$2.16053$ |
$[0, -1, 0, -16, -34]$ |
\(y^2=x^3-x^2-16x-34\) |
20.2.0.a.1 |
$[(23, 106)]$ |
15680.bg1 |
15680p1 |
15680.bg |
15680p |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{16} \cdot 5^{5} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7680$ |
$0.599366$ |
$137564/3125$ |
$0.92712$ |
$3.15298$ |
$[0, -1, 0, 159, 4705]$ |
\(y^2=x^3-x^2+159x+4705\) |
20.2.0.a.1 |
$[]$ |