Learn more

Refine search


Results (1-50 of 94 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
159201.a1 159201.a \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -371469, -95869958]$ \(y^2+y=x^3-371469x-95869958\) 38.2.0.a.1
159201.b1 159201.b \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -7057911, -7431392124]$ \(y^2+y=x^3-7057911x-7431392124\) 38.2.0.a.1
159201.c1 159201.c \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $1.197356602$ $[0, 0, 1, -25206825, 48724708702]$ \(y^2+y=x^3-25206825x+48724708702\) 6.2.0.a.1
159201.d1 159201.d \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $149.4230963$ $[0, 0, 1, -1235134425, -16712575084872]$ \(y^2+y=x^3-1235134425x-16712575084872\) 6.2.0.a.1
159201.e1 159201.e \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -698945457, 7112363371524]$ \(y^2+y=x^3-698945457x+7112363371524\) 5.12.0.a.2, 38.2.0.a.1, 190.24.1.?, 210.24.0.?, 1995.24.0.?, $\ldots$
159201.e2 159201.e \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 3130953, 2435567454]$ \(y^2+y=x^3+3130953x+2435567454\) 5.12.0.a.1, 38.2.0.a.1, 190.24.1.?, 210.24.0.?, 1995.24.0.?, $\ldots$
159201.f1 159201.f \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $2.176645797$ $[0, 0, 1, -144039, 21665866]$ \(y^2+y=x^3-144039x+21665866\) 38.2.0.a.1
159201.g1 159201.g \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $6.248174716$ $[1, -1, 1, -114628037, -471997446280]$ \(y^2+xy+y=x^3-x^2-114628037x-471997446280\) 2.3.0.a.1, 84.6.0.?, 228.6.0.?, 266.6.0.?, 1596.12.0.?
159201.g2 159201.g \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $3.124087358$ $[1, -1, 1, -8759372, -3846209650]$ \(y^2+xy+y=x^3-x^2-8759372x-3846209650\) 2.3.0.a.1, 84.6.0.?, 114.6.0.?, 532.6.0.?, 1596.12.0.?
159201.h1 159201.h \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.303435535$ $[1, -1, 1, -524, 6444]$ \(y^2+xy+y=x^3-x^2-524x+6444\) 84.2.0.?
159201.i1 159201.i \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $2$ $\Z/2\Z$ $7.807515919$ $[1, -1, 1, -124816901, 536764088522]$ \(y^2+xy+y=x^3-x^2-124816901x+536764088522\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 12.12.0.h.1, 16.24.0.e.2, $\ldots$
159201.i2 159201.i \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $7.807515919$ $[1, -1, 1, -7804166, 8381382356]$ \(y^2+xy+y=x^3-x^2-7804166x+8381382356\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.e.1, 12.24.0.c.1, 24.48.0.j.2, $\ldots$
159201.i3 159201.i \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $2$ $\Z/2\Z$ $7.807515919$ $[1, -1, 1, -6212156, -5921872288]$ \(y^2+xy+y=x^3-x^2-6212156x-5921872288\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 28.12.0.h.1, 48.48.0.bf.1, $\ldots$
159201.i4 159201.i \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $2$ $\Z/2\Z$ $7.807515919$ $[1, -1, 1, -5416151, 13605403970]$ \(y^2+xy+y=x^3-x^2-5416151x+13605403970\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.bb.2, 12.12.0.g.1, $\ldots$
159201.i5 159201.i \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $7.807515919$ $[1, -1, 1, -640121, 42433976]$ \(y^2+xy+y=x^3-x^2-640121x+42433976\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.e.2, 24.48.0.w.2, 28.24.0.c.1, $\ldots$
159201.i6 159201.i \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $2$ $\Z/2\Z$ $7.807515919$ $[1, -1, 1, 155884, 5180942]$ \(y^2+xy+y=x^3-x^2+155884x+5180942\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 14.6.0.b.1, 16.24.0.e.1, $\ldots$
159201.j1 159201.j \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -47073746, 123983313472]$ \(y^2+xy+y=x^3-x^2-47073746x+123983313472\) 2.3.0.a.1, 28.6.0.d.1, 114.6.0.?, 1596.12.0.?
159201.j2 159201.j \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -1701461, 3583417996]$ \(y^2+xy+y=x^3-x^2-1701461x+3583417996\) 2.3.0.a.1, 28.6.0.d.1, 228.6.0.?, 798.6.0.?, 1596.12.0.?
159201.k1 159201.k \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $2$ $\Z/2\Z$ $8.261610144$ $[1, -1, 1, -4620146, -2048653470]$ \(y^2+xy+y=x^3-x^2-4620146x-2048653470\) 2.3.0.a.1, 28.6.0.a.1, 228.6.0.?, 1596.12.0.?
159201.k2 159201.k \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $2$ $\Z/2\Z$ $8.261610144$ $[1, -1, 1, 951889, -234398874]$ \(y^2+xy+y=x^3-x^2+951889x-234398874\) 2.3.0.a.1, 28.6.0.b.1, 228.6.0.?, 798.6.0.?, 1596.12.0.?
159201.l1 159201.l \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $3.957760703$ $[1, -1, 1, -1011590, -390946524]$ \(y^2+xy+y=x^3-x^2-1011590x-390946524\) 2.3.0.a.1, 12.6.0.c.1, 76.6.0.?, 114.6.0.?, 228.12.0.?
159201.l2 159201.l \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $7.915521406$ $[1, -1, 1, -746255, -600985710]$ \(y^2+xy+y=x^3-x^2-746255x-600985710\) 2.3.0.a.1, 6.6.0.a.1, 76.6.0.?, 228.12.0.?
159201.m1 159201.m \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $26.52794699$ $[1, -1, 1, -105553580, -417387364054]$ \(y^2+xy+y=x^3-x^2-105553580x-417387364054\) 6.2.0.a.1, 7.8.0.a.1, 14.16.0-7.a.1.2, 21.16.0-7.a.1.2, 42.32.0-42.a.1.3, $\ldots$
159201.m2 159201.m \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $3.789706713$ $[1, -1, 1, 315085, 73955774]$ \(y^2+xy+y=x^3-x^2+315085x+73955774\) 6.2.0.a.1, 7.8.0.a.1, 14.16.0-7.a.1.1, 21.16.0-7.a.1.1, 42.32.0-42.a.1.1, $\ldots$
159201.n1 159201.n \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -7644965, -6997257354]$ \(y^2+xy+y=x^3-x^2-7644965x-6997257354\) 2.3.0.a.1, 28.6.0.a.1, 228.6.0.?, 1596.12.0.?
159201.n2 159201.n \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -2072930, 1042074744]$ \(y^2+xy+y=x^3-x^2-2072930x+1042074744\) 2.3.0.a.1, 28.6.0.b.1, 114.6.0.?, 1596.12.0.?
159201.o1 159201.o \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $2$ $\Z/2\Z$ $2.575204957$ $[1, -1, 1, -14489, 673040]$ \(y^2+xy+y=x^3-x^2-14489x+673040\) 2.3.0.a.1, 28.6.0.d.1, 114.6.0.?, 1596.12.0.?
159201.o2 159201.o \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $2$ $\Z/2\Z$ $2.575204957$ $[1, -1, 1, -524, 19478]$ \(y^2+xy+y=x^3-x^2-524x+19478\) 2.3.0.a.1, 28.6.0.d.1, 228.6.0.?, 798.6.0.?, 1596.12.0.?
159201.p1 159201.p \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -94289, 5999690]$ \(y^2+xy+y=x^3-x^2-94289x+5999690\) 2.3.0.a.1, 28.6.0.a.1, 228.6.0.?, 1596.12.0.?
159201.p2 159201.p \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 19426, 677828]$ \(y^2+xy+y=x^3-x^2+19426x+677828\) 2.3.0.a.1, 28.6.0.b.1, 228.6.0.?, 798.6.0.?, 1596.12.0.?
159201.q1 159201.q \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -1701461, 1169612434]$ \(y^2+xy+y=x^3-x^2-1701461x+1169612434\) 84.2.0.?
159201.r1 159201.r \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -74190983, -181133398456]$ \(y^2+xy+y=x^3-x^2-74190983x-181133398456\) 2.3.0.a.1, 28.6.0.a.1, 228.6.0.?, 1596.12.0.?
159201.r2 159201.r \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -68618948, -218744634706]$ \(y^2+xy+y=x^3-x^2-68618948x-218744634706\) 2.3.0.a.1, 28.6.0.b.1, 114.6.0.?, 1596.12.0.?
159201.s1 159201.s \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $8.872638764$ $[0, 0, 1, -1485876, -1091035409]$ \(y^2+y=x^3-1485876x-1091035409\) 38.2.0.a.1
159201.t1 159201.t \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $-19$ $26.73760462$ $[0, 0, 1, -6049638, -5732788210]$ \(y^2+y=x^3-6049638x-5732788210\)
159201.t2 159201.t \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $-19$ $1.407242348$ $[0, 0, 1, -16758, 835805]$ \(y^2+y=x^3-16758x+835805\)
159201.u1 159201.u \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $-3$ $23.60746286$ $[0, 0, 1, 0, -778134688]$ \(y^2+y=x^3-778134688\)
159201.u2 159201.u \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $-3$ $7.869154286$ $[0, 0, 1, 0, 28819803]$ \(y^2+y=x^3+28819803\)
159201.v1 159201.v \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $-3$ $1.774171858$ $[0, 0, 1, 0, -233]$ \(y^2+y=x^3-233\)
159201.v2 159201.v \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $-3$ $1.774171858$ $[0, 0, 1, 0, 6284]$ \(y^2+y=x^3+6284\)
159201.w1 159201.w \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $-3$ $1$ $[0, 0, 1, 0, -547576262]$ \(y^2+y=x^3-547576262\)
159201.w2 159201.w \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $-3$ $1$ $[0, 0, 1, 0, 14784559067]$ \(y^2+y=x^3+14784559067\)
159201.x1 159201.x \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $-3$ $1$ $[0, 0, 1, 0, -1516832]$ \(y^2+y=x^3-1516832\)
159201.x2 159201.x \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $-3$ $1$ $[0, 0, 1, 0, 40954457]$ \(y^2+y=x^3+40954457\)
159201.y1 159201.y \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $-3$ $1$ $[0, 0, 1, 0, -30332213]$ \(y^2+y=x^3-30332213\)
159201.y2 159201.y \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $-3$ $1$ $[0, 0, 1, 0, 818969744]$ \(y^2+y=x^3+818969744\)
159201.z1 159201.z \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $-3$ $0.917029831$ $[0, 0, 1, 0, -119401]$ \(y^2+y=x^3-119401\)
159201.z2 159201.z \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $1$ $\Z/3\Z$ $-3$ $2.751089495$ $[0, 0, 1, 0, 4422]$ \(y^2+y=x^3+4422\)
159201.ba1 159201.ba \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $-3$ $103.6818065$ $[0, 0, 1, 0, -280906622278]$ \(y^2+y=x^3-280906622278\)
159201.ba2 159201.ba \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $-3$ $34.56060219$ $[0, 0, 1, 0, 10403948973]$ \(y^2+y=x^3+10403948973\)
Next   displayed columns for results