Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
16245.a1 |
16245n1 |
16245.a |
16245n |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( 3^{20} \cdot 5^{3} \cdot 19^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3217536$ |
$3.391376$ |
$1914902401024/597871125$ |
$1.06216$ |
$6.63364$ |
$[0, 0, 1, -42614967, 72660506130]$ |
\(y^2+y=x^3-42614967x+72660506130\) |
10.2.0.a.1 |
$[]$ |
16245.b1 |
16245i1 |
16245.b |
16245i |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( 3^{8} \cdot 5 \cdot 19^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$1.044960297$ |
$1$ |
|
$4$ |
$109440$ |
$1.518972$ |
$77824/45$ |
$1.11940$ |
$4.27097$ |
$[0, 0, 1, -20577, 32580]$ |
\(y^2+y=x^3-20577x+32580\) |
10.2.0.a.1 |
$[(0, 180)]$ |
16245.c1 |
16245d7 |
16245.c |
16245d |
$8$ |
$16$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( 3^{10} \cdot 5 \cdot 19^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.121 |
2B |
$9120$ |
$768$ |
$13$ |
$16.44430019$ |
$1$ |
|
$0$ |
$221184$ |
$2.312397$ |
$1114544804970241/405$ |
$1.07354$ |
$6.07553$ |
$[1, -1, 1, -7017908, -7154068534]$ |
\(y^2+xy+y=x^3-x^2-7017908x-7154068534\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 10.6.0.a.1, 16.48.0.x.2, $\ldots$ |
$[(241989799/118, 3703451766397/118)]$ |
16245.c2 |
16245d5 |
16245.c |
16245d |
$8$ |
$16$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( 3^{14} \cdot 5^{2} \cdot 19^{6} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.123 |
2Cs |
$4560$ |
$768$ |
$13$ |
$8.222150098$ |
$1$ |
|
$2$ |
$110592$ |
$1.965822$ |
$272223782641/164025$ |
$1.03897$ |
$5.21768$ |
$[1, -1, 1, -438683, -111666094]$ |
\(y^2+xy+y=x^3-x^2-438683x-111666094\) |
2.6.0.a.1, 4.12.0.b.1, 8.48.0.k.1, 20.24.0.c.1, 40.96.1.cc.2, $\ldots$ |
$[(69199/2, 18120143/2)]$ |
16245.c3 |
16245d8 |
16245.c |
16245d |
$8$ |
$16$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( - 3^{22} \cdot 5 \cdot 19^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.134 |
2B |
$9120$ |
$768$ |
$13$ |
$16.44430019$ |
$1$ |
|
$0$ |
$221184$ |
$2.312397$ |
$-147281603041/215233605$ |
$1.05949$ |
$5.28427$ |
$[1, -1, 1, -357458, -154357954]$ |
\(y^2+xy+y=x^3-x^2-357458x-154357954\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.ba.2, 16.48.0.u.2, 20.12.0.h.1, $\ldots$ |
$[(257475799/122, 4113143706683/122)]$ |
16245.c4 |
16245d4 |
16245.c |
16245d |
$8$ |
$16$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( 3^{7} \cdot 5 \cdot 19^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.48.0.1 |
2B |
$9120$ |
$768$ |
$13$ |
$4.111075049$ |
$1$ |
|
$0$ |
$55296$ |
$1.619247$ |
$56667352321/15$ |
$1.03019$ |
$5.05581$ |
$[1, -1, 1, -259988, 51089312]$ |
\(y^2+xy+y=x^3-x^2-259988x+51089312\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 24.24.0.by.2, $\ldots$ |
$[(1215/2, 959/2)]$ |
16245.c5 |
16245d3 |
16245.c |
16245d |
$8$ |
$16$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( 3^{10} \cdot 5^{4} \cdot 19^{6} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.44 |
2Cs |
$4560$ |
$768$ |
$13$ |
$4.111075049$ |
$1$ |
|
$4$ |
$55296$ |
$1.619247$ |
$111284641/50625$ |
$1.02534$ |
$4.41295$ |
$[1, -1, 1, -32558, -1037644]$ |
\(y^2+xy+y=x^3-x^2-32558x-1037644\) |
2.6.0.a.1, 4.24.0.b.1, 8.48.0.b.2, 24.96.1.n.1, 40.96.1.s.1, $\ldots$ |
$[(799/2, 4251/2)]$ |
16245.c6 |
16245d2 |
16245.c |
16245d |
$8$ |
$16$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( 3^{8} \cdot 5^{2} \cdot 19^{6} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.3 |
2Cs |
$4560$ |
$768$ |
$13$ |
$2.055537524$ |
$1$ |
|
$6$ |
$27648$ |
$1.272675$ |
$13997521/225$ |
$0.96230$ |
$4.19912$ |
$[1, -1, 1, -16313, 794792]$ |
\(y^2+xy+y=x^3-x^2-16313x+794792\) |
2.6.0.a.1, 4.12.0.b.1, 8.24.0.i.1, 16.48.0.d.2, 24.48.0.bb.2, $\ldots$ |
$[(33, 523)]$ |
16245.c7 |
16245d1 |
16245.c |
16245d |
$8$ |
$16$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( - 3^{7} \cdot 5 \cdot 19^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.48.0.1 |
2B |
$9120$ |
$768$ |
$13$ |
$1.027768762$ |
$1$ |
|
$7$ |
$13824$ |
$0.926101$ |
$-1/15$ |
$1.19808$ |
$3.55020$ |
$[1, -1, 1, -68, 34526]$ |
\(y^2+xy+y=x^3-x^2-68x+34526\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 24.24.0.bz.1, $\ldots$ |
$[(-14, 187)]$ |
16245.c8 |
16245d6 |
16245.c |
16245d |
$8$ |
$16$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( - 3^{8} \cdot 5^{8} \cdot 19^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.197 |
2B |
$9120$ |
$768$ |
$13$ |
$8.222150098$ |
$1$ |
|
$0$ |
$110592$ |
$1.965822$ |
$4733169839/3515625$ |
$1.05585$ |
$4.79975$ |
$[1, -1, 1, 113647, -7880038]$ |
\(y^2+xy+y=x^3-x^2+113647x-7880038\) |
2.3.0.a.1, 4.12.0.d.1, 8.48.0.n.2, 24.96.1.cv.2, 80.96.1.?, $\ldots$ |
$[(14527/14, 2566173/14)]$ |
16245.d1 |
16245l2 |
16245.d |
16245l |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( 3^{16} \cdot 5^{2} \cdot 19^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1140$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$230400$ |
$2.140167$ |
$48587168449/28048275$ |
$1.03180$ |
$5.03994$ |
$[1, -1, 1, -246992, -2283816]$ |
\(y^2+xy+y=x^3-x^2-246992x-2283816\) |
2.3.0.a.1, 60.6.0.c.1, 76.6.0.?, 1140.12.0.? |
$[]$ |
16245.d2 |
16245l1 |
16245.d |
16245l |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( - 3^{11} \cdot 5 \cdot 19^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1140$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$115200$ |
$1.793594$ |
$756058031/438615$ |
$1.00322$ |
$4.61057$ |
$[1, -1, 1, 61663, -308424]$ |
\(y^2+xy+y=x^3-x^2+61663x-308424\) |
2.3.0.a.1, 30.6.0.a.1, 76.6.0.?, 1140.12.0.? |
$[]$ |
16245.e1 |
16245g2 |
16245.e |
16245g |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( 3^{10} \cdot 5^{2} \cdot 19^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$0.966889388$ |
$1$ |
|
$6$ |
$10240$ |
$0.633922$ |
$9393931/2025$ |
$0.89098$ |
$3.24691$ |
$[1, -1, 1, -752, -6096]$ |
\(y^2+xy+y=x^3-x^2-752x-6096\) |
2.3.0.a.1, 20.6.0.e.1, 76.6.0.?, 380.12.0.? |
$[(-16, 48)]$ |
16245.e2 |
16245g1 |
16245.e |
16245g |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( - 3^{8} \cdot 5 \cdot 19^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$1.933778777$ |
$1$ |
|
$5$ |
$5120$ |
$0.287348$ |
$24389/45$ |
$0.82301$ |
$2.71362$ |
$[1, -1, 1, 103, -624]$ |
\(y^2+xy+y=x^3-x^2+103x-624\) |
2.3.0.a.1, 20.6.0.e.1, 76.6.0.?, 190.6.0.?, 380.12.0.? |
$[(14, 51)]$ |
16245.f1 |
16245a2 |
16245.f |
16245a |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( 3^{8} \cdot 5 \cdot 19^{8} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$30$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$2$ |
$590976$ |
$2.790077$ |
$1590409933520896/45$ |
$1.29281$ |
$6.71958$ |
$[0, 0, 1, -56257518, 162412318188]$ |
\(y^2+y=x^3-56257518x+162412318188\) |
3.8.0-3.a.1.2, 10.2.0.a.1, 30.16.0-30.a.1.4 |
$[]$ |
16245.f2 |
16245a1 |
16245.f |
16245a |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( 3^{12} \cdot 5^{3} \cdot 19^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$30$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$196992$ |
$2.240772$ |
$3058794496/91125$ |
$0.98270$ |
$5.36210$ |
$[0, 0, 1, -699618, 219362823]$ |
\(y^2+y=x^3-699618x+219362823\) |
3.8.0-3.a.1.1, 10.2.0.a.1, 30.16.0-30.a.1.1 |
$[]$ |
16245.g1 |
16245b2 |
16245.g |
16245b |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( 3^{8} \cdot 5 \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$570$ |
$16$ |
$0$ |
$9.284794529$ |
$1$ |
|
$0$ |
$31104$ |
$1.317858$ |
$1590409933520896/45$ |
$1.29281$ |
$4.89744$ |
$[0, 0, 1, -155838, -23678717]$ |
\(y^2+y=x^3-155838x-23678717\) |
3.4.0.a.1, 10.2.0.a.1, 30.8.0.a.1, 57.8.0-3.a.1.1, 570.16.0.? |
$[(-2188903/98, -464591/98)]$ |
16245.g2 |
16245b1 |
16245.g |
16245b |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( 3^{12} \cdot 5^{3} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$570$ |
$16$ |
$0$ |
$3.094931509$ |
$1$ |
|
$2$ |
$10368$ |
$0.768552$ |
$3058794496/91125$ |
$0.98270$ |
$3.53996$ |
$[0, 0, 1, -1938, -31982]$ |
\(y^2+y=x^3-1938x-31982\) |
3.4.0.a.1, 10.2.0.a.1, 30.8.0.a.1, 57.8.0-3.a.1.2, 570.16.0.? |
$[(-22, 2)]$ |
16245.h1 |
16245j2 |
16245.h |
16245j |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( 3^{6} \cdot 5^{9} \cdot 19^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$1710$ |
$144$ |
$2$ |
$0.465110768$ |
$1$ |
|
$12$ |
$18144$ |
$0.956387$ |
$7575076864/1953125$ |
$1.00586$ |
$3.63349$ |
$[0, 0, 1, -2622, -38480]$ |
\(y^2+y=x^3-2622x-38480\) |
3.4.0.a.1, 9.12.0.b.1, 10.2.0.a.1, 30.8.0.a.1, 57.8.0-3.a.1.1, $\ldots$ |
$[(-32, 112), (58, 67)]$ |
16245.h2 |
16245j1 |
16245.h |
16245j |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( 3^{6} \cdot 5^{3} \cdot 19^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$1710$ |
$144$ |
$2$ |
$0.465110768$ |
$1$ |
|
$14$ |
$6048$ |
$0.407080$ |
$318767104/125$ |
$1.09713$ |
$3.30673$ |
$[0, 0, 1, -912, 10597]$ |
\(y^2+y=x^3-912x+10597\) |
3.4.0.a.1, 9.12.0.b.1, 10.2.0.a.1, 30.8.0.a.1, 57.8.0-3.a.1.2, $\ldots$ |
$[(17, 2), (7, 67)]$ |
16245.i1 |
16245e2 |
16245.i |
16245e |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( 3^{6} \cdot 5^{9} \cdot 19^{8} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.24.0.2 |
3B.1.1 |
$1710$ |
$144$ |
$2$ |
$2.586444006$ |
$1$ |
|
$6$ |
$344736$ |
$2.428604$ |
$7575076864/1953125$ |
$1.00586$ |
$5.45563$ |
$[0, 0, 1, -946542, 263932605]$ |
\(y^2+y=x^3-946542x+263932605\) |
3.8.0-3.a.1.2, 9.24.0-9.b.1.2, 10.2.0.a.1, 30.16.0-30.a.1.4, 90.48.0.?, $\ldots$ |
$[(833, 7312)]$ |
16245.i2 |
16245e1 |
16245.i |
16245e |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( 3^{6} \cdot 5^{3} \cdot 19^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.24.0.4 |
3B.1.2 |
$1710$ |
$144$ |
$2$ |
$0.862148002$ |
$1$ |
|
$4$ |
$114912$ |
$1.879299$ |
$318767104/125$ |
$1.09713$ |
$5.12887$ |
$[0, 0, 1, -329232, -72686538]$ |
\(y^2+y=x^3-329232x-72686538\) |
3.8.0-3.a.1.1, 9.24.0-9.b.1.1, 10.2.0.a.1, 30.16.0-30.a.1.1, 90.48.0.?, $\ldots$ |
$[(722, 8122)]$ |
16245.j1 |
16245c3 |
16245.j |
16245c |
$4$ |
$4$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( 3^{8} \cdot 5^{3} \cdot 19^{10} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2280$ |
$48$ |
$0$ |
$39.39376491$ |
$1$ |
|
$0$ |
$829440$ |
$2.775665$ |
$23977812996389881/146611125$ |
$1.09826$ |
$6.39203$ |
$[1, -1, 0, -19518435, -33185583684]$ |
\(y^2+xy=x^3-x^2-19518435x-33185583684\) |
2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 20.12.0.g.1, 24.12.0-4.c.1.3, $\ldots$ |
$[(-3631521783781244895/37719248, 88868122687073948516744937/37719248)]$ |
16245.j2 |
16245c4 |
16245.j |
16245c |
$4$ |
$4$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( 3^{8} \cdot 5^{12} \cdot 19^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2280$ |
$48$ |
$0$ |
$9.848441229$ |
$1$ |
|
$0$ |
$829440$ |
$2.775665$ |
$209595169258201/41748046875$ |
$0.98100$ |
$5.90318$ |
$[1, -1, 0, -4020705, 2513992950]$ |
\(y^2+xy=x^3-x^2-4020705x+2513992950\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0.z.1, 76.12.0.?, $\ldots$ |
$[(5202/7, 15656292/7)]$ |
16245.j3 |
16245c2 |
16245.j |
16245c |
$4$ |
$4$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( 3^{10} \cdot 5^{6} \cdot 19^{8} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$1140$ |
$48$ |
$0$ |
$19.69688245$ |
$1$ |
|
$2$ |
$414720$ |
$2.429092$ |
$6189976379881/456890625$ |
$0.95560$ |
$5.53989$ |
$[1, -1, 0, -1242810, -497800809]$ |
\(y^2+xy=x^3-x^2-1242810x-497800809\) |
2.6.0.a.1, 12.12.0-2.a.1.1, 20.12.0.b.1, 60.24.0-20.b.1.3, 76.12.0.?, $\ldots$ |
$[(-2415902130/2149, 32338290966381/2149)]$ |
16245.j4 |
16245c1 |
16245.j |
16245c |
$4$ |
$4$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( - 3^{14} \cdot 5^{3} \cdot 19^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2280$ |
$48$ |
$0$ |
$9.848441229$ |
$1$ |
|
$1$ |
$207360$ |
$2.082516$ |
$1256216039/15582375$ |
$0.94875$ |
$4.97413$ |
$[1, -1, 0, 73035, -34360200]$ |
\(y^2+xy=x^3-x^2+73035x-34360200\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0.z.1, 120.24.0.?, $\ldots$ |
$[(524968/31, 378375588/31)]$ |
16245.k1 |
16245k2 |
16245.k |
16245k |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( 3^{8} \cdot 5^{6} \cdot 19^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1140$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$138240$ |
$2.031864$ |
$90458382169/2671875$ |
$1.09032$ |
$5.10404$ |
$[1, -1, 0, -303849, -62723970]$ |
\(y^2+xy=x^3-x^2-303849x-62723970\) |
2.3.0.a.1, 60.6.0.c.1, 76.6.0.?, 1140.12.0.? |
$[]$ |
16245.k2 |
16245k1 |
16245.k |
16245k |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( - 3^{7} \cdot 5^{3} \cdot 19^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1140$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$69120$ |
$1.685291$ |
$357911/135375$ |
$0.95197$ |
$4.48941$ |
$[1, -1, 0, 4806, -3277017]$ |
\(y^2+xy=x^3-x^2+4806x-3277017\) |
2.3.0.a.1, 30.6.0.a.1, 76.6.0.?, 1140.12.0.? |
$[]$ |
16245.l1 |
16245f2 |
16245.l |
16245f |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( 3^{10} \cdot 5^{2} \cdot 19^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$6.235771154$ |
$1$ |
|
$0$ |
$194560$ |
$2.106140$ |
$9393931/2025$ |
$0.89098$ |
$5.06905$ |
$[1, -1, 0, -271359, 43167438]$ |
\(y^2+xy=x^3-x^2-271359x+43167438\) |
2.3.0.a.1, 20.6.0.e.1, 76.6.0.?, 380.12.0.? |
$[(-2217/2, 40647/2)]$ |
16245.l2 |
16245f1 |
16245.l |
16245f |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( - 3^{8} \cdot 5 \cdot 19^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$12.47154230$ |
$1$ |
|
$1$ |
$97280$ |
$1.759567$ |
$24389/45$ |
$0.82301$ |
$4.53576$ |
$[1, -1, 0, 37296, 4091715]$ |
\(y^2+xy=x^3-x^2+37296x+4091715\) |
2.3.0.a.1, 20.6.0.e.1, 76.6.0.?, 190.6.0.?, 380.12.0.? |
$[(-248751/56, 146307267/56)]$ |
16245.m1 |
16245h1 |
16245.m |
16245h |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( 3^{20} \cdot 5^{3} \cdot 19^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$6.139490043$ |
$1$ |
|
$0$ |
$169344$ |
$1.919157$ |
$1914902401024/597871125$ |
$1.06216$ |
$4.81150$ |
$[0, 0, 1, -118047, -10593455]$ |
\(y^2+y=x^3-118047x-10593455\) |
10.2.0.a.1 |
$[(-943/2, 16261/2)]$ |
16245.n1 |
16245m1 |
16245.n |
16245m |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
\( 3^{8} \cdot 5 \cdot 19^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5760$ |
$0.046754$ |
$77824/45$ |
$1.11940$ |
$2.44883$ |
$[0, 0, 1, -57, -5]$ |
\(y^2+y=x^3-57x-5\) |
10.2.0.a.1 |
$[]$ |