Learn more

Refine search


Results (1-50 of 76 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
23104.a1 23104.a \( 2^{6} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $2.306391114$ $[0, 0, 0, -27436, 39617584]$ \(y^2=x^3-27436x+39617584\) 3.3.0.a.1, 24.6.0.m.1, 57.6.0.a.1, 152.2.0.?, 456.12.1.?
23104.b1 23104.b \( 2^{6} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.601499014$ $[0, 0, 0, -27436, 2085136]$ \(y^2=x^3-27436x+2085136\) 8.2.0.a.1
23104.c1 23104.c \( 2^{6} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $0.548385238$ $[0, 0, 0, -76, 304]$ \(y^2=x^3-76x+304\) 8.2.0.a.1
23104.d1 23104.d \( 2^{6} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $0.590992785$ $[0, 0, 0, -76, 5776]$ \(y^2=x^3-76x+5776\) 3.3.0.a.1, 24.6.0.m.1, 57.6.0.a.1, 152.2.0.?, 456.12.1.?
23104.e1 23104.e \( 2^{6} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.985246167$ $[0, 0, 0, 7220, 109744]$ \(y^2=x^3+7220x+109744\) 152.2.0.?
23104.f1 23104.f \( 2^{6} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $0.419205023$ $[0, 0, 0, -12844, 560272]$ \(y^2=x^3-12844x+560272\) 3.3.0.a.1, 12.6.0.d.1, 152.2.0.?, 456.12.1.?
23104.g1 23104.g \( 2^{6} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -4636684, 3842905648]$ \(y^2=x^3-4636684x+3842905648\) 3.3.0.a.1, 12.6.0.d.1, 152.2.0.?, 456.12.1.?
23104.h1 23104.h \( 2^{6} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $1.031266971$ $[0, 1, 0, 13, 31]$ \(y^2=x^3+x^2+13x+31\) 3.3.0.a.1, 12.6.0.h.1, 38.2.0.a.1, 114.6.1.?, 228.12.1.?
23104.i1 23104.i \( 2^{6} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $1.622303643$ $[0, 1, 0, -1110917, 450312229]$ \(y^2=x^3+x^2-1110917x+450312229\) 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.5, 27.36.0.a.1, 38.2.0.a.1, $\ldots$
23104.i2 23104.i \( 2^{6} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $1.622303643$ $[0, 1, 0, -13477, 636189]$ \(y^2=x^3+x^2-13477x+636189\) 3.12.0.a.1, 9.36.0.b.1, 24.24.0-3.a.1.3, 38.2.0.a.1, 72.72.0.?, $\ldots$
23104.i3 23104.i \( 2^{6} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $1.622303643$ $[0, 1, 0, 963, 829]$ \(y^2=x^3+x^2+963x+829\) 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.6, 27.36.0.a.1, 38.2.0.a.1, $\ldots$
23104.j1 23104.j \( 2^{6} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 4573, 184939]$ \(y^2=x^3+x^2+4573x+184939\) 3.3.0.a.1, 12.6.0.h.1, 38.2.0.a.1, 114.6.1.?, 228.12.1.?
23104.k1 23104.k \( 2^{6} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -1925, -187613]$ \(y^2=x^3+x^2-1925x-187613\) 38.2.0.a.1
23104.l1 23104.l \( 2^{6} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $5.945658099$ $[0, 1, 0, -30805, -2099469]$ \(y^2=x^3+x^2-30805x-2099469\) 38.2.0.a.1
23104.m1 23104.m \( 2^{6} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.740721234$ $[0, -1, 0, -1697, 27481]$ \(y^2=x^3-x^2-1697x+27481\) 2.2.0.a.1, 5.5.0.a.1, 10.10.0.a.1, 38.6.0.a.1, 152.12.0.?, $\ldots$
23104.n1 23104.n \( 2^{6} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $5.749905657$ $[0, -1, 0, -612737, 184816009]$ \(y^2=x^3-x^2-612737x+184816009\) 2.2.0.a.1, 5.5.0.a.1, 8.4.0-2.a.1.1, 10.10.0.a.1, 38.6.0.a.1, $\ldots$
23104.o1 23104.o \( 2^{6} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $17.73719083$ $[0, -1, 0, -2149153, -1214145631]$ \(y^2=x^3-x^2-2149153x-1214145631\) 3.4.0.a.1, 8.2.0.a.1, 9.12.0.b.1, 12.8.0-3.a.1.4, 24.16.0-24.a.1.4, $\ldots$
23104.o2 23104.o \( 2^{6} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $5.912396943$ $[0, -1, 0, 45727, -8278559]$ \(y^2=x^3-x^2+45727x-8278559\) 3.4.0.a.1, 8.2.0.a.1, 9.12.0.b.1, 12.8.0-3.a.1.3, 24.16.0-24.a.1.2, $\ldots$
23104.p1 23104.p \( 2^{6} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.850327041$ $[0, -1, 0, -12033, -723551]$ \(y^2=x^3-x^2-12033x-723551\) 152.2.0.?
23104.q1 23104.q \( 2^{6} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $9.747721593$ $[0, -1, 0, -1975873, -8598438175]$ \(y^2=x^3-x^2-1975873x-8598438175\) 3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.4, 27.36.0.a.1, 36.24.0-9.a.1.3, $\ldots$
23104.q2 23104.q \( 2^{6} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.083080177$ $[0, -1, 0, -358593, 82797409]$ \(y^2=x^3-x^2-358593x+82797409\) 3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.3, 27.36.0.a.1, 36.24.0-9.a.1.4, $\ldots$
23104.q3 23104.q \( 2^{6} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $3.249240531$ $[0, -1, 0, 219007, 314091553]$ \(y^2=x^3-x^2+219007x+314091553\) 3.12.0.a.1, 9.36.0.b.1, 12.24.0-3.a.1.2, 36.72.0-9.b.1.2, 152.2.0.?, $\ldots$
23104.r1 23104.r \( 2^{6} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $9.409276033$ $[0, -1, 0, -5953, -175135]$ \(y^2=x^3-x^2-5953x-175135\) 3.4.0.a.1, 8.2.0.a.1, 9.12.0.b.1, 24.8.0.a.1, 72.24.0.?, $\ldots$
23104.r2 23104.r \( 2^{6} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $3.136425344$ $[0, -1, 0, 127, -1247]$ \(y^2=x^3-x^2+127x-1247\) 3.4.0.a.1, 8.2.0.a.1, 9.12.0.b.1, 24.8.0.a.1, 72.24.0.?, $\ldots$
23104.s1 23104.s \( 2^{6} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -9145, -267247]$ \(y^2=x^3-x^2-9145x-267247\) 2.2.0.a.1, 5.5.0.a.1, 8.4.0-2.a.1.1, 10.10.0.a.1, 38.6.0.a.1, $\ldots$
23104.t1 23104.t \( 2^{6} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -25, -31]$ \(y^2=x^3-x^2-25x-31\) 2.2.0.a.1, 5.5.0.a.1, 10.10.0.a.1, 38.6.0.a.1, 152.12.0.?, $\ldots$
23104.u1 23104.u \( 2^{6} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.873473484$ $[0, -1, 0, -481, -7327]$ \(y^2=x^3-x^2-481x-7327\) 8.2.0.a.1
23104.v1 23104.v \( 2^{6} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $27.27586920$ $[0, -1, 0, -173761, -51298207]$ \(y^2=x^3-x^2-173761x-51298207\) 8.2.0.a.1
23104.w1 23104.w \( 2^{6} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -1617761, 877251553]$ \(y^2=x^3-x^2-1617761x+877251553\) 5.12.0.a.2, 10.24.0-5.a.2.2, 152.2.0.?, 760.48.1.?
23104.w2 23104.w \( 2^{6} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -481, -4166047]$ \(y^2=x^3-x^2-481x-4166047\) 5.12.0.a.1, 10.24.0-5.a.1.1, 152.2.0.?, 760.48.1.?
23104.x1 23104.x \( 2^{6} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.711155428$ $[0, 0, 0, -5054, 4156554]$ \(y^2=x^3-5054x+4156554\) 5.15.0.a.1, 20.30.0.a.1, 38.2.0.a.1, 190.30.2.?, 380.60.3.?
23104.y1 23104.y \( 2^{6} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $10.23330254$ $[0, 0, 0, -5054, -4156554]$ \(y^2=x^3-5054x-4156554\) 5.15.0.a.1, 20.30.0.a.1, 38.2.0.a.1, 190.30.2.?, 380.60.3.?
23104.z1 23104.z \( 2^{6} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $-19$ $5.325900492$ $[0, 0, 0, -54872, 4952198]$ \(y^2=x^3-54872x+4952198\)
23104.z2 23104.z \( 2^{6} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $-19$ $5.325900492$ $[0, 0, 0, -152, -722]$ \(y^2=x^3-152x-722\)
23104.ba1 23104.ba \( 2^{6} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $4.327251135$ $[0, 0, 0, -722, -13718]$ \(y^2=x^3-722x-13718\) 38.2.0.a.1
23104.bb1 23104.bb \( 2^{6} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -722, 13718]$ \(y^2=x^3-722x+13718\) 38.2.0.a.1
23104.bc1 23104.bc \( 2^{6} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $-19$ $19.94010943$ $[0, 0, 0, -54872, -4952198]$ \(y^2=x^3-54872x-4952198\)
23104.bc2 23104.bc \( 2^{6} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $-19$ $1.049479443$ $[0, 0, 0, -152, 722]$ \(y^2=x^3-152x+722\)
23104.bd1 23104.bd \( 2^{6} \cdot 19^{2} \) $0$ $\Z/2\Z$ $-4$ $1$ $[0, 0, 0, -19, 0]$ \(y^2=x^3-19x\)
23104.bd2 23104.bd \( 2^{6} \cdot 19^{2} \) $0$ $\Z/2\Z$ $-4$ $1$ $[0, 0, 0, 76, 0]$ \(y^2=x^3+76x\)
23104.be1 23104.be \( 2^{6} \cdot 19^{2} \) $0$ $\Z/2\Z$ $-4$ $1$ $[0, 0, 0, -6859, 0]$ \(y^2=x^3-6859x\)
23104.be2 23104.be \( 2^{6} \cdot 19^{2} \) $0$ $\Z/2\Z$ $-4$ $1$ $[0, 0, 0, 27436, 0]$ \(y^2=x^3+27436x\)
23104.bf1 23104.bf \( 2^{6} \cdot 19^{2} \) $1$ $\Z/2\Z$ $-16$ $14.45723861$ $[0, 0, 0, -15884, -768208]$ \(y^2=x^3-15884x-768208\)
23104.bf2 23104.bf \( 2^{6} \cdot 19^{2} \) $1$ $\Z/2\Z$ $-16$ $3.614309653$ $[0, 0, 0, -15884, 768208]$ \(y^2=x^3-15884x+768208\)
23104.bf3 23104.bf \( 2^{6} \cdot 19^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $-4$ $7.228619307$ $[0, 0, 0, -1444, 0]$ \(y^2=x^3-1444x\)
23104.bf4 23104.bf \( 2^{6} \cdot 19^{2} \) $1$ $\Z/2\Z$ $-4$ $14.45723861$ $[0, 0, 0, 361, 0]$ \(y^2=x^3+361x\)
23104.bg1 23104.bg \( 2^{6} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -612737, -184816009]$ \(y^2=x^3+x^2-612737x-184816009\) 2.2.0.a.1, 5.5.0.a.1, 8.4.0-2.a.1.1, 10.10.0.a.1, 38.6.0.a.1, $\ldots$
23104.bh1 23104.bh \( 2^{6} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -1697, -27481]$ \(y^2=x^3+x^2-1697x-27481\) 2.2.0.a.1, 5.5.0.a.1, 10.10.0.a.1, 38.6.0.a.1, 152.12.0.?, $\ldots$
23104.bi1 23104.bi \( 2^{6} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $1.767749747$ $[0, 1, 0, -5953, 175135]$ \(y^2=x^3+x^2-5953x+175135\) 3.4.0.a.1, 8.2.0.a.1, 9.12.0.b.1, 24.8.0.a.1, 72.24.0.?, $\ldots$
23104.bi2 23104.bi \( 2^{6} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $1.767749747$ $[0, 1, 0, 127, 1247]$ \(y^2=x^3+x^2+127x+1247\) 3.4.0.a.1, 8.2.0.a.1, 9.12.0.b.1, 24.8.0.a.1, 72.24.0.?, $\ldots$
Next   displayed columns for results