Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
234.a1 |
234c2 |
234.a |
234c |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 13 \) |
\( 2^{2} \cdot 3^{3} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$0.138579856$ |
$1$ |
|
$14$ |
$32$ |
$-0.242657$ |
$1033364331/676$ |
$1.11849$ |
$4.40889$ |
$[1, -1, 0, -63, 209]$ |
\(y^2+xy=x^3-x^2-63x+209\) |
2.3.0.a.1, 12.6.0.a.1, 52.6.0.e.1, 156.12.0.? |
$[(8, 9)]$ |
234.a2 |
234c1 |
234.a |
234c |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 13 \) |
\( - 2^{4} \cdot 3^{3} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$0.277159712$ |
$1$ |
|
$9$ |
$16$ |
$-0.589231$ |
$-132651/208$ |
$1.11492$ |
$3.00665$ |
$[1, -1, 0, -3, 5]$ |
\(y^2+xy=x^3-x^2-3x+5\) |
2.3.0.a.1, 12.6.0.b.1, 52.6.0.e.1, 78.6.0.?, 156.12.0.? |
$[(1, 1)]$ |
234.b1 |
234a2 |
234.b |
234a |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 13 \) |
\( - 2 \cdot 3^{6} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$2184$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$196$ |
$0.839101$ |
$-1064019559329/125497034$ |
$1.06269$ |
$6.31865$ |
$[1, -1, 0, -1914, 35846]$ |
\(y^2+xy=x^3-x^2-1914x+35846\) |
7.24.0.a.2, 21.48.0-7.a.2.2, 104.2.0.?, 728.48.2.?, 2184.96.2.? |
$[]$ |
234.b2 |
234a1 |
234.b |
234a |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.1 |
7B.6.1 |
$2184$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$28$ |
$-0.133854$ |
$-2146689/1664$ |
$0.96784$ |
$4.03661$ |
$[1, -1, 0, -24, -64]$ |
\(y^2+xy=x^3-x^2-24x-64\) |
7.24.0.a.1, 21.48.0-7.a.1.2, 104.2.0.?, 728.48.2.?, 2184.96.2.? |
$[]$ |
234.c1 |
234d3 |
234.c |
234d |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 13 \) |
\( 2^{4} \cdot 3^{11} \cdot 13^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$312$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1280$ |
$1.517384$ |
$986551739719628473/111045168$ |
$1.06555$ |
$8.80327$ |
$[1, -1, 1, -186656, -30992493]$ |
\(y^2+xy+y=x^3-x^2-186656x-30992493\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 12.24.0-12.h.1.1, 104.24.0.?, 312.48.0.? |
$[]$ |
234.c2 |
234d4 |
234.c |
234d |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 13 \) |
\( 2^{4} \cdot 3^{26} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$312$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1280$ |
$1.517384$ |
$1416134368422073/725251155408$ |
$1.07849$ |
$7.60329$ |
$[1, -1, 1, -21056, 404115]$ |
\(y^2+xy+y=x^3-x^2-21056x+404115\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 12.12.0-4.c.1.1, 24.24.0-24.ba.1.12, $\ldots$ |
$[]$ |
234.c3 |
234d2 |
234.c |
234d |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 13 \) |
\( 2^{8} \cdot 3^{16} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$156$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$640$ |
$1.170811$ |
$242702053576633/2554695936$ |
$1.10395$ |
$7.27996$ |
$[1, -1, 1, -11696, -479469]$ |
\(y^2+xy+y=x^3-x^2-11696x-479469\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 12.24.0-12.a.1.2, 52.24.0-52.b.1.3, 156.48.0.? |
$[]$ |
234.c4 |
234d1 |
234.c |
234d |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 13 \) |
\( - 2^{16} \cdot 3^{11} \cdot 13 \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$312$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$320$ |
$0.824237$ |
$-822656953/207028224$ |
$1.08584$ |
$6.08526$ |
$[1, -1, 1, -176, -18669]$ |
\(y^2+xy+y=x^3-x^2-176x-18669\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 24.24.0-24.ba.1.8, 78.6.0.?, 104.24.0.?, $\ldots$ |
$[]$ |
234.d1 |
234b2 |
234.d |
234b |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 13 \) |
\( 2^{2} \cdot 3^{9} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$96$ |
$0.306649$ |
$1033364331/676$ |
$1.11849$ |
$5.61719$ |
$[1, -1, 1, -569, -5075]$ |
\(y^2+xy+y=x^3-x^2-569x-5075\) |
2.3.0.a.1, 12.6.0.a.1, 52.6.0.e.1, 156.12.0.? |
$[]$ |
234.d2 |
234b1 |
234.d |
234b |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 13 \) |
\( - 2^{4} \cdot 3^{9} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$48$ |
$-0.039925$ |
$-132651/208$ |
$1.11492$ |
$4.21495$ |
$[1, -1, 1, -29, -107]$ |
\(y^2+xy+y=x^3-x^2-29x-107\) |
2.3.0.a.1, 12.6.0.b.1, 52.6.0.e.1, 78.6.0.?, 156.12.0.? |
$[]$ |
234.e1 |
234e3 |
234.e |
234e |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 13 \) |
\( - 2^{9} \cdot 3^{6} \cdot 13 \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.24.0.1 |
3B.1.1 |
$936$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$2$ |
$180$ |
$0.603693$ |
$-10730978619193/6656$ |
$1.02193$ |
$6.70828$ |
$[1, -1, 1, -4136, 103403]$ |
\(y^2+xy+y=x^3-x^2-4136x+103403\) |
3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 104.2.0.?, 117.72.0.?, 312.16.0.?, $\ldots$ |
$[]$ |
234.e2 |
234e2 |
234.e |
234e |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 13 \) |
\( - 2^{3} \cdot 3^{6} \cdot 13^{3} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.24.0.1 |
3Cs.1.1 |
$936$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$2$ |
$60$ |
$0.054386$ |
$-10218313/17576$ |
$0.94717$ |
$4.41967$ |
$[1, -1, 1, -41, 209]$ |
\(y^2+xy+y=x^3-x^2-41x+209\) |
3.24.0-3.a.1.1, 104.2.0.?, 117.72.0.?, 312.48.1.?, 936.144.3.? |
$[]$ |
234.e3 |
234e1 |
234.e |
234e |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 13 \) |
\( - 2 \cdot 3^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.24.0.3 |
3B.1.2 |
$936$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$20$ |
$-0.494920$ |
$12167/26$ |
$0.84415$ |
$3.11415$ |
$[1, -1, 1, 4, -7]$ |
\(y^2+xy+y=x^3-x^2+4x-7\) |
3.8.0-3.a.1.1, 9.24.0-9.a.1.1, 104.2.0.?, 117.72.0.?, 312.16.0.?, $\ldots$ |
$[]$ |