Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
2368.a1 |
2368r1 |
2368.a |
2368r |
$1$ |
$1$ |
\( 2^{6} \cdot 37 \) |
\( 2^{6} \cdot 37^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.3.0.1 |
3Nn |
$444$ |
$12$ |
$1$ |
$0.156820051$ |
$1$ |
|
$4$ |
$1728$ |
$0.145999$ |
$31077609984/50653$ |
$0.98374$ |
$3.64471$ |
$[0, 0, 0, -262, 1630]$ |
\(y^2=x^3-262x+1630\) |
3.3.0.a.1, 12.6.0.d.1, 74.2.0.?, 222.6.1.?, 444.12.1.? |
$[(1, 37)]$ |
2368.b1 |
2368q1 |
2368.b |
2368q |
$1$ |
$1$ |
\( 2^{6} \cdot 37 \) |
\( 2^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$0.645697454$ |
$1$ |
|
$2$ |
$160$ |
$-0.649968$ |
$110592/37$ |
$0.76978$ |
$2.02997$ |
$[0, 0, 0, -4, -2]$ |
\(y^2=x^3-4x-2\) |
74.2.0.? |
$[(-1, 1)]$ |
2368.c1 |
2368i1 |
2368.c |
2368i |
$1$ |
$1$ |
\( 2^{6} \cdot 37 \) |
\( 2^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$576$ |
$-0.323111$ |
$337153536/37$ |
$0.92195$ |
$3.06249$ |
$[0, 0, 0, -58, -170]$ |
\(y^2=x^3-58x-170\) |
74.2.0.? |
$[]$ |
2368.d1 |
2368c3 |
2368.d |
2368c |
$3$ |
$9$ |
\( 2^{6} \cdot 37 \) |
\( 2^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$7992$ |
$1296$ |
$43$ |
$5.015196751$ |
$1$ |
|
$0$ |
$864$ |
$0.568655$ |
$727057727488000/37$ |
$1.08598$ |
$4.93950$ |
$[0, -1, 0, -7493, -247169]$ |
\(y^2=x^3-x^2-7493x-247169\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.1, 27.36.0.a.1, 72.24.0.?, $\ldots$ |
$[(-26262/23, 31/23)]$ |
2368.d2 |
2368c2 |
2368.d |
2368c |
$3$ |
$9$ |
\( 2^{6} \cdot 37 \) |
\( 2^{6} \cdot 37^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$7992$ |
$1296$ |
$43$ |
$1.671732250$ |
$1$ |
|
$2$ |
$288$ |
$0.019349$ |
$1404928000/50653$ |
$0.97274$ |
$3.24618$ |
$[0, -1, 0, -93, -305]$ |
\(y^2=x^3-x^2-93x-305\) |
3.12.0.a.1, 9.36.0.b.1, 24.24.0-3.a.1.1, 72.72.0.?, 74.2.0.?, $\ldots$ |
$[(-6, 1)]$ |
2368.d3 |
2368c1 |
2368.d |
2368c |
$3$ |
$9$ |
\( 2^{6} \cdot 37 \) |
\( 2^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$7992$ |
$1296$ |
$43$ |
$0.557244083$ |
$1$ |
|
$2$ |
$96$ |
$-0.529957$ |
$4096000/37$ |
$0.88268$ |
$2.49484$ |
$[0, -1, 0, -13, 23]$ |
\(y^2=x^3-x^2-13x+23\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.2, 27.36.0.a.1, 72.24.0.?, $\ldots$ |
$[(2, 1)]$ |
2368.e1 |
2368n1 |
2368.e |
2368n |
$1$ |
$1$ |
\( 2^{6} \cdot 37 \) |
\( 2^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$0.674127336$ |
$1$ |
|
$2$ |
$64$ |
$-0.663027$ |
$64000/37$ |
$0.98512$ |
$1.95958$ |
$[0, -1, 0, -3, 1]$ |
\(y^2=x^3-x^2-3x+1\) |
74.2.0.? |
$[(0, 1)]$ |
2368.f1 |
2368k1 |
2368.f |
2368k |
$1$ |
$1$ |
\( 2^{6} \cdot 37 \) |
\( 2^{14} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$256$ |
$-0.009594$ |
$16000000/37$ |
$0.93985$ |
$3.38389$ |
$[0, -1, 0, -133, -547]$ |
\(y^2=x^3-x^2-133x-547\) |
74.2.0.? |
$[]$ |
2368.g1 |
2368o1 |
2368.g |
2368o |
$1$ |
$1$ |
\( 2^{6} \cdot 37 \) |
\( 2^{14} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$1.503759192$ |
$1$ |
|
$2$ |
$256$ |
$-0.155666$ |
$351232/37$ |
$0.74527$ |
$2.89239$ |
$[0, -1, 0, -37, -67]$ |
\(y^2=x^3-x^2-37x-67\) |
74.2.0.? |
$[(-4, 1)]$ |
2368.h1 |
2368l1 |
2368.h |
2368l |
$1$ |
$1$ |
\( 2^{6} \cdot 37 \) |
\( 2^{14} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$384$ |
$-0.200392$ |
$65536/37$ |
$0.98850$ |
$2.67631$ |
$[0, -1, 0, -21, 13]$ |
\(y^2=x^3-x^2-21x+13\) |
74.2.0.? |
$[]$ |
2368.i1 |
2368e2 |
2368.i |
2368e |
$2$ |
$2$ |
\( 2^{6} \cdot 37 \) |
\( 2^{12} \cdot 37 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.21 |
2B |
$296$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$288$ |
$-0.002657$ |
$203297472/37$ |
$1.19792$ |
$3.53264$ |
$[0, 0, 0, -196, -1056]$ |
\(y^2=x^3-196x-1056\) |
2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.3, 74.6.0.?, 148.12.0.?, $\ldots$ |
$[]$ |
2368.i2 |
2368e1 |
2368.i |
2368e |
$2$ |
$2$ |
\( 2^{6} \cdot 37 \) |
\( - 2^{6} \cdot 37^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.12 |
2B |
$296$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$144$ |
$-0.349231$ |
$-2299968/1369$ |
$0.83964$ |
$2.51160$ |
$[0, 0, 0, -11, -20]$ |
\(y^2=x^3-11x-20\) |
2.3.0.a.1, 4.12.0-4.a.1.1, 148.24.0.?, 296.48.0.? |
$[]$ |
2368.j1 |
2368d2 |
2368.j |
2368d |
$2$ |
$2$ |
\( 2^{6} \cdot 37 \) |
\( 2^{12} \cdot 37 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.21 |
2B |
$296$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$288$ |
$-0.002657$ |
$203297472/37$ |
$1.19792$ |
$3.53264$ |
$[0, 0, 0, -196, 1056]$ |
\(y^2=x^3-196x+1056\) |
2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.3, 74.6.0.?, 148.12.0.?, $\ldots$ |
$[]$ |
2368.j2 |
2368d1 |
2368.j |
2368d |
$2$ |
$2$ |
\( 2^{6} \cdot 37 \) |
\( - 2^{6} \cdot 37^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.12 |
2B |
$296$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$144$ |
$-0.349231$ |
$-2299968/1369$ |
$0.83964$ |
$2.51160$ |
$[0, 0, 0, -11, 20]$ |
\(y^2=x^3-11x+20\) |
2.3.0.a.1, 4.12.0-4.a.1.1, 148.24.0.?, 296.48.0.? |
$[]$ |
2368.k1 |
2368a1 |
2368.k |
2368a |
$1$ |
$1$ |
\( 2^{6} \cdot 37 \) |
\( 2^{14} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$1.183157092$ |
$1$ |
|
$2$ |
$256$ |
$-0.009594$ |
$16000000/37$ |
$0.93985$ |
$3.38389$ |
$[0, 1, 0, -133, 547]$ |
\(y^2=x^3+x^2-133x+547\) |
74.2.0.? |
$[(6, 1)]$ |
2368.l1 |
2368m1 |
2368.l |
2368m |
$1$ |
$1$ |
\( 2^{6} \cdot 37 \) |
\( 2^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$0.931734318$ |
$1$ |
|
$2$ |
$64$ |
$-0.663027$ |
$64000/37$ |
$0.98512$ |
$1.95958$ |
$[0, 1, 0, -3, -1]$ |
\(y^2=x^3+x^2-3x-1\) |
74.2.0.? |
$[(-2, 1)]$ |
2368.m1 |
2368j3 |
2368.m |
2368j |
$3$ |
$9$ |
\( 2^{6} \cdot 37 \) |
\( 2^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$7992$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$864$ |
$0.568655$ |
$727057727488000/37$ |
$1.08598$ |
$4.93950$ |
$[0, 1, 0, -7493, 247169]$ |
\(y^2=x^3+x^2-7493x+247169\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.3, 27.36.0.a.1, 72.24.0.?, $\ldots$ |
$[]$ |
2368.m2 |
2368j2 |
2368.m |
2368j |
$3$ |
$9$ |
\( 2^{6} \cdot 37 \) |
\( 2^{6} \cdot 37^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$7992$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$288$ |
$0.019349$ |
$1404928000/50653$ |
$0.97274$ |
$3.24618$ |
$[0, 1, 0, -93, 305]$ |
\(y^2=x^3+x^2-93x+305\) |
3.12.0.a.1, 9.36.0.b.1, 24.24.0-3.a.1.2, 72.72.0.?, 74.2.0.?, $\ldots$ |
$[]$ |
2368.m3 |
2368j1 |
2368.m |
2368j |
$3$ |
$9$ |
\( 2^{6} \cdot 37 \) |
\( 2^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$7992$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$96$ |
$-0.529957$ |
$4096000/37$ |
$0.88268$ |
$2.49484$ |
$[0, 1, 0, -13, -23]$ |
\(y^2=x^3+x^2-13x-23\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.4, 27.36.0.a.1, 72.24.0.?, $\ldots$ |
$[]$ |
2368.n1 |
2368f1 |
2368.n |
2368f |
$1$ |
$1$ |
\( 2^{6} \cdot 37 \) |
\( 2^{14} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$256$ |
$-0.155666$ |
$351232/37$ |
$0.74527$ |
$2.89239$ |
$[0, 1, 0, -37, 67]$ |
\(y^2=x^3+x^2-37x+67\) |
74.2.0.? |
$[]$ |
2368.o1 |
2368b1 |
2368.o |
2368b |
$1$ |
$1$ |
\( 2^{6} \cdot 37 \) |
\( 2^{14} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$1.640956973$ |
$1$ |
|
$2$ |
$384$ |
$-0.200392$ |
$65536/37$ |
$0.98850$ |
$2.67631$ |
$[0, 1, 0, -21, -13]$ |
\(y^2=x^3+x^2-21x-13\) |
74.2.0.? |
$[(-2, 5)]$ |
2368.p1 |
2368p1 |
2368.p |
2368p |
$1$ |
$1$ |
\( 2^{6} \cdot 37 \) |
\( 2^{6} \cdot 37^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.3.0.1 |
3Nn |
$444$ |
$12$ |
$1$ |
$1.175921219$ |
$1$ |
|
$0$ |
$1728$ |
$0.145999$ |
$31077609984/50653$ |
$0.98374$ |
$3.64471$ |
$[0, 0, 0, -262, -1630]$ |
\(y^2=x^3-262x-1630\) |
3.3.0.a.1, 12.6.0.d.1, 74.2.0.?, 222.6.1.?, 444.12.1.? |
$[(-83/3, 37/3)]$ |
2368.q1 |
2368g1 |
2368.q |
2368g |
$1$ |
$1$ |
\( 2^{6} \cdot 37 \) |
\( 2^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$160$ |
$-0.649968$ |
$110592/37$ |
$0.76978$ |
$2.02997$ |
$[0, 0, 0, -4, 2]$ |
\(y^2=x^3-4x+2\) |
74.2.0.? |
$[]$ |
2368.r1 |
2368h1 |
2368.r |
2368h |
$1$ |
$1$ |
\( 2^{6} \cdot 37 \) |
\( 2^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$576$ |
$-0.323111$ |
$337153536/37$ |
$0.92195$ |
$3.06249$ |
$[0, 0, 0, -58, 170]$ |
\(y^2=x^3-58x+170\) |
74.2.0.? |
$[]$ |