Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
264.a1 |
264b3 |
264.a |
264b |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 11 \) |
\( 2^{11} \cdot 3^{4} \cdot 11 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.8 |
2B |
$264$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$64$ |
$0.212413$ |
$5690357426/891$ |
$0.97486$ |
$5.39579$ |
$[0, -1, 0, -472, 4108]$ |
\(y^2=x^3-x^2-472x+4108\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 24.24.0-24.bb.1.16, 44.12.0-4.c.1.1, $\ldots$ |
$[]$ |
264.a2 |
264b2 |
264.a |
264b |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 11 \) |
\( 2^{10} \cdot 3^{2} \cdot 11^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.1 |
2Cs |
$264$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$32$ |
$-0.134161$ |
$3650692/1089$ |
$0.89911$ |
$3.95303$ |
$[0, -1, 0, -32, 60]$ |
\(y^2=x^3-x^2-32x+60\) |
2.6.0.a.1, 8.12.0-2.a.1.1, 12.12.0-2.a.1.1, 24.24.0-24.a.1.3, 44.12.0-2.a.1.1, $\ldots$ |
$[]$ |
264.a3 |
264b1 |
264.a |
264b |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 11 \) |
\( 2^{8} \cdot 3 \cdot 11 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.12 |
2B |
$264$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$16$ |
$-0.480734$ |
$810448/33$ |
$0.82188$ |
$3.43449$ |
$[0, -1, 0, -12, -12]$ |
\(y^2=x^3-x^2-12x-12\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 12.12.0-4.c.1.2, 24.24.0-24.bb.1.2, $\ldots$ |
$[]$ |
264.a4 |
264b4 |
264.a |
264b |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 11 \) |
\( - 2^{11} \cdot 3 \cdot 11^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.7 |
2B |
$264$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$64$ |
$0.212413$ |
$36382894/43923$ |
$0.96093$ |
$4.50450$ |
$[0, -1, 0, 88, 300]$ |
\(y^2=x^3-x^2+88x+300\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 12.12.0-4.c.1.1, 24.24.0-24.v.1.4, $\ldots$ |
$[]$ |
264.b1 |
264c4 |
264.b |
264c |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 11 \) |
\( 2^{10} \cdot 3 \cdot 11 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$264$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$96$ |
$0.169321$ |
$37736227588/33$ |
$0.98449$ |
$5.61077$ |
$[0, 1, 0, -704, 6960]$ |
\(y^2=x^3+x^2-704x+6960\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 12.12.0-4.c.1.1, 24.24.0-24.ba.1.12, $\ldots$ |
$[]$ |
264.b2 |
264c3 |
264.b |
264c |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 11 \) |
\( 2^{10} \cdot 3 \cdot 11^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$264$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$96$ |
$0.169321$ |
$122657188/43923$ |
$0.95383$ |
$4.58332$ |
$[0, 1, 0, -104, -288]$ |
\(y^2=x^3+x^2-104x-288\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 12.24.0-12.h.1.1, 88.24.0.?, 264.48.0.? |
$[]$ |
264.b3 |
264c2 |
264.b |
264c |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 11 \) |
\( 2^{8} \cdot 3^{2} \cdot 11^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$132$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$48$ |
$-0.177253$ |
$37642192/1089$ |
$0.89513$ |
$4.12285$ |
$[0, 1, 0, -44, 96]$ |
\(y^2=x^3+x^2-44x+96\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 12.24.0-12.a.1.2, 44.24.0-44.b.1.1, 132.48.0.? |
$[]$ |
264.b4 |
264c1 |
264.b |
264c |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 11 \) |
\( - 2^{4} \cdot 3^{4} \cdot 11 \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$264$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$24$ |
$-0.523827$ |
$2048/891$ |
$1.09261$ |
$3.05209$ |
$[0, 1, 0, 1, 6]$ |
\(y^2=x^3+x^2+x+6\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 22.6.0.a.1, 24.24.0-24.ba.1.8, 44.24.0-44.g.1.2, $\ldots$ |
$[]$ |
264.c1 |
264a1 |
264.c |
264a |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 11 \) |
\( 2^{10} \cdot 3 \cdot 11 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$264$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$16$ |
$-0.439444$ |
$62500/33$ |
$1.02621$ |
$3.22356$ |
$[0, 1, 0, -8, 0]$ |
\(y^2=x^3+x^2-8x\) |
2.3.0.a.1, 8.6.0.d.1, 66.6.0.a.1, 264.12.0.? |
$[]$ |
264.c2 |
264a2 |
264.c |
264a |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 11 \) |
\( - 2^{11} \cdot 3^{2} \cdot 11^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$264$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$32$ |
$-0.092870$ |
$1714750/1089$ |
$1.18812$ |
$3.94182$ |
$[0, 1, 0, 32, 32]$ |
\(y^2=x^3+x^2+32x+32\) |
2.3.0.a.1, 8.6.0.a.1, 132.6.0.?, 264.12.0.? |
$[]$ |
264.d1 |
264d1 |
264.d |
264d |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 11 \) |
\( 2^{10} \cdot 3^{7} \cdot 11 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$264$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$336$ |
$0.760713$ |
$55635379958596/24057$ |
$1.02905$ |
$6.91924$ |
$[0, 1, 0, -8016, -278928]$ |
\(y^2=x^3+x^2-8016x-278928\) |
2.3.0.a.1, 8.6.0.d.1, 66.6.0.a.1, 264.12.0.? |
$[]$ |
264.d2 |
264d2 |
264.d |
264d |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 11 \) |
\( - 2^{11} \cdot 3^{14} \cdot 11^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$264$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$672$ |
$1.107286$ |
$-27403349188178/578739249$ |
$1.02957$ |
$6.92297$ |
$[0, 1, 0, -7976, -281808]$ |
\(y^2=x^3+x^2-7976x-281808\) |
2.3.0.a.1, 8.6.0.a.1, 132.6.0.?, 264.12.0.? |
$[]$ |