⌂
→
Elliptic curves
→
$\Q$
→
27
Citation
·
Feedback
·
Hide Menu
Elliptic curves over $\Q$ of conductor 27
Introduction
Overview
Random
Universe
Knowledge
L-functions
Rational
All
Modular forms
Classical
Maass
Hilbert
Bianchi
Varieties
Elliptic curves over $\Q$
Elliptic curves over $\Q(\alpha)$
Genus 2 curves over $\Q$
Higher genus families
Abelian varieties over $\F_{q}$
Fields
Number fields
$p$-adic fields
Representations
Dirichlet characters
Artin representations
Groups
Galois groups
Sato-Tate groups
Database
↑
Learn more
Source and acknowledgments
Completeness of the data
Reliability of the data
Elliptic curve labels
Congruent number curves
Refine search
Advanced search options
Conductor
prime
p-power
sq-free
divides
multiple of
Discriminant
j-invariant
Rank
Bad$\ p$
include
exclude
exactly
subset
Curves per isogeny class
Complex multiplication
Torsion
all
one
no potential CM
potential CM
CM field Q(sqrt(-1))
CM field Q(sqrt(-3))
CM field Q(sqrt(-7))
CM discriminant -3
CM discriminant -4
CM discriminant -7
CM discriminant -8
CM discriminant -11
CM discriminant -12
CM discriminant -16
CM discriminant -19
CM discriminant -27
CM discriminant -28
CM discriminant -43
CM discriminant -67
CM discriminant -163
trivial
order 4
order 8
order 12
ℤ/2ℤ
ℤ/3ℤ
ℤ/4ℤ
ℤ/5ℤ
ℤ/6ℤ
ℤ/7ℤ
ℤ/8ℤ
ℤ/9ℤ
ℤ/10ℤ
ℤ/12ℤ
ℤ/2ℤ⊕ℤ/2ℤ
ℤ/2ℤ⊕ℤ/4ℤ
ℤ/2ℤ⊕ℤ/6ℤ
ℤ/2ℤ⊕ℤ/8ℤ
Isogeny class degree
Cyclic isogeny degree
Isogeny class size
Integral points
Analytic order of Ш
$p\ $div$\ $|Ш|
include
exclude
exactly
subset
Regulator
Reduction
Faltings height
semistable
not semistable
potentially good
not potentially good
Galois image
Adelic level
Adelic index
Adelic genus
Nonmax$\ \ell$
include
exclude
exactly
subset
$abc$ quality
Szpiro ratio
Sort order
Select
Search again
Random curve
▲ conductor
rank
torsion
CM discriminant
regulator
analytic Ш
isogeny class size
isogeny class degree
integral points
modular degree
adelic level
adelic index
adelic genus
Faltings height
$abc$ quality
Szpiro ratio
columns to display
✓ LMFDB curve label
Cremona curve label
✓ LMFDB class label
Cremona class label
class size
class degree
✓ conductor
discriminant
✓ rank
✓ torsion
Qbar-end algebra
✓ CM discriminant
Sato-Tate group
semistable
potentially good
nonmaximal primes
ℓ-adic images
mod-ℓ images
adelic level
adelic index
adelic genus
regulator
analytic Ш
ш primes
integral points
modular degree
Faltings height
j-invariant
abc quality
szpiro ratio
Weierstrass coeffs
✓ Weierstrass equation
mod-m images
mw-generators
show all
Results (4 matches)
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
Label
Cremona label
Class
Cremona class
Class size
Class degree
Conductor
Discriminant
Rank
Torsion
$\textrm{End}^0(E_{\overline\Q})$
CM
Sato-Tate
Semistable
Potentially good
Nonmax $\ell$
$\ell$-adic images
mod-$\ell$ images
Adelic level
Adelic index
Adelic genus
Regulator
$Ш_{\textrm{an}}$
Ш primes
Integral points
Modular degree
Faltings height
j-invariant
$abc$ quality
Szpiro ratio
Weierstrass coefficients
Weierstrass equation
mod-$m$ images
MW-generators
27.a1
27a2
27.a
27a
$4$
$27$
\( 3^{3} \)
\( - 3^{11} \)
$0$
$\mathsf{trivial}$
$\Q(\sqrt{-3})$
$-27$
$N(\mathrm{U}(1))$
✓
$3$
27.648.13.34
3B.1.2
$1$
$1$
$0$
$3$
$0.052148$
$-12288000$
$1.23864$
$8.61966$
$[0, 0, 1, -270, -1708]$
\(y^2+y=x^3-270x-1708\)
$[]$
27.a2
27a4
27.a
27a
$4$
$27$
\( 3^{3} \)
\( - 3^{5} \)
$0$
$\Z/3\Z$
$\Q(\sqrt{-3})$
$-27$
$N(\mathrm{U}(1))$
✓
$3$
27.648.13.25
3B.1.1
$1$
$1$
$2$
$9$
$-0.497158$
$-12288000$
$1.23864$
$6.61966$
$[0, 0, 1, -30, 63]$
\(y^2+y=x^3-30x+63\)
$[]$
27.a3
27a1
27.a
27a
$4$
$27$
\( 3^{3} \)
\( - 3^{9} \)
$0$
$\Z/3\Z$
$\Q(\sqrt{-3})$
$-3$
$N(\mathrm{U}(1))$
✓
$3$
27.1944.55.37
3Cs.1.1
$1$
$1$
$2$
$1$
$-0.497158$
$0$
$5.26186$
$[0, 0, 1, 0, -7]$
\(y^2+y=x^3-7\)
$[]$
27.a4
27a3
27.a
27a
$4$
$27$
\( 3^{3} \)
\( - 3^{3} \)
$0$
$\Z/3\Z$
$\Q(\sqrt{-3})$
$-3$
$N(\mathrm{U}(1))$
✓
$3$
27.1944.55.31
3Cs.1.1
$1$
$1$
$2$
$3$
$-1.046465$
$0$
$3.26186$
$[0, 0, 1, 0, 0]$
\(y^2+y=x^3\)
$[]$
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV