Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
270504.a1 |
270504a2 |
270504.a |
270504a |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{11} \cdot 3^{10} \cdot 13 \cdot 17^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1768$ |
$12$ |
$0$ |
$15.35120588$ |
$1$ |
|
$1$ |
$34537472$ |
$2.917694$ |
$9365216434/1053$ |
$0.91524$ |
$5.01081$ |
$[0, 0, 0, -24658347, 47125053830]$ |
\(y^2=x^3-24658347x+47125053830\) |
2.3.0.a.1, 68.6.0.c.1, 104.6.0.?, 1768.12.0.? |
$[(5150729/22, 10594311091/22)]$ |
270504.a2 |
270504a1 |
270504.a |
270504a |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{10} \cdot 3^{8} \cdot 13^{2} \cdot 17^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1768$ |
$12$ |
$0$ |
$7.675602941$ |
$1$ |
|
$1$ |
$17268736$ |
$2.571117$ |
$5771588/1521$ |
$0.82035$ |
$4.36443$ |
$[0, 0, 0, -1665507, 610538510]$ |
\(y^2=x^3-1665507x+610538510\) |
2.3.0.a.1, 34.6.0.a.1, 104.6.0.?, 1768.12.0.? |
$[(-4207/2, 276991/2)]$ |
270504.b1 |
270504b2 |
270504.b |
270504b |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{8} \cdot 13^{2} \cdot 17^{7} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$18.85728395$ |
$1$ |
|
$9$ |
$4718592$ |
$2.304741$ |
$238481570896/25857$ |
$0.93322$ |
$4.42385$ |
$[0, 0, 0, -2133687, -1199508950]$ |
\(y^2=x^3-2133687x-1199508950\) |
2.3.0.a.1, 34.6.0.a.1, 52.6.0.c.1, 884.12.0.? |
$[(-837, 104), (1698, 8554)]$ |
270504.b2 |
270504b1 |
270504.b |
270504b |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{10} \cdot 13 \cdot 17^{8} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$4.714320988$ |
$1$ |
|
$9$ |
$2359296$ |
$1.958168$ |
$1171019776/304317$ |
$0.92581$ |
$3.77714$ |
$[0, 0, 0, -143922, -15598775]$ |
\(y^2=x^3-143922x-15598775\) |
2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? |
$[(884, 23409), (-799/2, 18207/2)]$ |
270504.c1 |
270504c2 |
270504.c |
270504c |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{12} \cdot 13 \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$3538944$ |
$1.927446$ |
$94875856/9477$ |
$0.90366$ |
$3.79789$ |
$[0, 0, 0, -156927, -21764590]$ |
\(y^2=x^3-156927x-21764590\) |
2.3.0.a.1, 12.6.0.c.1, 26.6.0.b.1, 156.12.0.? |
$[]$ |
270504.c2 |
270504c1 |
270504.c |
270504c |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{9} \cdot 13^{2} \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1769472$ |
$1.580872$ |
$702464/4563$ |
$0.96739$ |
$3.36989$ |
$[0, 0, 0, 12138, -1645855]$ |
\(y^2=x^3+12138x-1645855\) |
2.3.0.a.1, 6.6.0.a.1, 52.6.0.c.1, 156.12.0.? |
$[]$ |
270504.d1 |
270504d1 |
270504.d |
270504d |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{9} \cdot 13 \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$78$ |
$2$ |
$0$ |
$1.457516152$ |
$1$ |
|
$10$ |
$152064$ |
$0.478482$ |
$-117504/13$ |
$0.61120$ |
$2.41250$ |
$[0, 0, 0, -459, 4131]$ |
\(y^2=x^3-459x+4131\) |
78.2.0.? |
$[(9, 27), (-18, 81)]$ |
270504.e1 |
270504e1 |
270504.e |
270504e |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{10} \cdot 3^{7} \cdot 13^{3} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$156$ |
$2$ |
$0$ |
$1.330402178$ |
$1$ |
|
$4$ |
$580608$ |
$1.334908$ |
$36004308772/6591$ |
$0.90431$ |
$3.47748$ |
$[0, 0, 0, -41259, 3225206]$ |
\(y^2=x^3-41259x+3225206\) |
156.2.0.? |
$[(115, 36)]$ |
270504.f1 |
270504f1 |
270504.f |
270504f |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{19} \cdot 13 \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$78$ |
$2$ |
$0$ |
$2.542160293$ |
$1$ |
|
$0$ |
$14257152$ |
$2.762318$ |
$34296366848/20726199$ |
$0.96035$ |
$4.50017$ |
$[0, 0, 0, 2933061, 406830791]$ |
\(y^2=x^3+2933061x+406830791\) |
78.2.0.? |
$[(55777/2, 13272903/2)]$ |
270504.g1 |
270504g1 |
270504.g |
270504g |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 13 \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$78$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$861696$ |
$1.345783$ |
$-117504/13$ |
$0.61120$ |
$3.24458$ |
$[0, 0, 0, -14739, -751689]$ |
\(y^2=x^3-14739x-751689\) |
78.2.0.? |
$[]$ |
270504.h1 |
270504h3 |
270504.h |
270504h |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{10} \cdot 3^{14} \cdot 13 \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.10 |
2B |
$10608$ |
$192$ |
$3$ |
$1$ |
$1$ |
|
$1$ |
$5242880$ |
$2.268745$ |
$3044193988/85293$ |
$0.95679$ |
$4.18602$ |
$[0, 0, 0, -791571, 264427486]$ |
\(y^2=x^3-791571x+264427486\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.o.1, 26.6.0.b.1, 48.24.0.i.1, $\ldots$ |
$[]$ |
270504.h2 |
270504h2 |
270504.h |
270504h |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{10} \cdot 13^{2} \cdot 17^{6} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.4 |
2Cs |
$5304$ |
$192$ |
$3$ |
$1$ |
$1$ |
|
$3$ |
$2621440$ |
$1.922173$ |
$37642192/13689$ |
$0.91195$ |
$3.72399$ |
$[0, 0, 0, -115311, -9187310]$ |
\(y^2=x^3-115311x-9187310\) |
2.6.0.a.1, 4.12.0.a.1, 24.24.0.k.1, 52.24.0.b.1, 104.48.0.?, $\ldots$ |
$[]$ |
270504.h3 |
270504h1 |
270504.h |
270504h |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{8} \cdot 13 \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.10 |
2B |
$10608$ |
$192$ |
$3$ |
$1$ |
$1$ |
|
$1$ |
$1310720$ |
$1.575600$ |
$420616192/117$ |
$0.96408$ |
$3.69528$ |
$[0, 0, 0, -102306, -12592019]$ |
\(y^2=x^3-102306x-12592019\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.o.1, 26.6.0.b.1, 48.24.0.i.1, $\ldots$ |
$[]$ |
270504.h4 |
270504h4 |
270504.h |
270504h |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( - 2^{10} \cdot 3^{8} \cdot 13^{4} \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.9 |
2B |
$10608$ |
$192$ |
$3$ |
$1$ |
$1$ |
|
$1$ |
$5242880$ |
$2.268745$ |
$269676572/257049$ |
$0.96683$ |
$3.99224$ |
$[0, 0, 0, 352869, -64900730]$ |
\(y^2=x^3+352869x-64900730\) |
2.3.0.a.1, 4.12.0.d.1, 12.24.0.e.1, 68.24.0-4.d.1.2, 104.24.0.?, $\ldots$ |
$[]$ |
270504.i1 |
270504i1 |
270504.i |
270504i |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{10} \cdot 3^{10} \cdot 13^{2} \cdot 17^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1768$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$8257536$ |
$2.352154$ |
$8251733668/232713$ |
$0.85660$ |
$4.26574$ |
$[0, 0, 0, -1103691, 435281974]$ |
\(y^2=x^3-1103691x+435281974\) |
2.3.0.a.1, 34.6.0.a.1, 104.6.0.?, 1768.12.0.? |
$[]$ |
270504.i2 |
270504i2 |
270504.i |
270504i |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( - 2^{11} \cdot 3^{14} \cdot 13 \cdot 17^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1768$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$16515072$ |
$2.698727$ |
$47279806/24649677$ |
$0.96128$ |
$4.45229$ |
$[0, 0, 0, 248829, 1433171230]$ |
\(y^2=x^3+248829x+1433171230\) |
2.3.0.a.1, 68.6.0.c.1, 104.6.0.?, 1768.12.0.? |
$[]$ |
270504.j1 |
270504j2 |
270504.j |
270504j |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{10} \cdot 3^{9} \cdot 13^{2} \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1990656$ |
$1.949471$ |
$530604/169$ |
$0.85497$ |
$3.75759$ |
$[0, 0, 0, -132651, -12469194]$ |
\(y^2=x^3-132651x-12469194\) |
2.3.0.a.1, 12.6.0.a.1, 52.6.0.e.1, 156.12.0.? |
$[]$ |
270504.j2 |
270504j1 |
270504.j |
270504j |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{9} \cdot 13 \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$995328$ |
$1.602898$ |
$11664/13$ |
$0.66228$ |
$3.34155$ |
$[0, 0, 0, 23409, -1326510]$ |
\(y^2=x^3+23409x-1326510\) |
2.3.0.a.1, 12.6.0.b.1, 52.6.0.e.1, 78.6.0.?, 156.12.0.? |
$[]$ |
270504.k1 |
270504k2 |
270504.k |
270504k |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{11} \cdot 3^{18} \cdot 13^{2} \cdot 17^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.2 |
2B |
$136$ |
$12$ |
$0$ |
$8.007805177$ |
$1$ |
|
$1$ |
$3538944$ |
$2.275604$ |
$22361640463762/89813529$ |
$0.97526$ |
$4.27359$ |
$[0, 0, 0, -1140411, -467119370]$ |
\(y^2=x^3-1140411x-467119370\) |
2.3.0.a.1, 8.6.0.f.1, 68.6.0.c.1, 136.12.0.? |
$[(-5798/3, 11836/3)]$ |
270504.k2 |
270504k1 |
270504.k |
270504k |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{10} \cdot 3^{12} \cdot 13^{4} \cdot 17^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.2 |
2B |
$136$ |
$12$ |
$0$ |
$4.003902588$ |
$1$ |
|
$3$ |
$1769472$ |
$1.929031$ |
$36047589764/20820969$ |
$1.05411$ |
$3.70409$ |
$[0, 0, 0, -106131, 582046]$ |
\(y^2=x^3-106131x+582046\) |
2.3.0.a.1, 8.6.0.f.1, 34.6.0.a.1, 136.12.0.? |
$[(-325, 864)]$ |
270504.l1 |
270504l1 |
270504.l |
270504l |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{12} \cdot 13^{3} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2652$ |
$12$ |
$0$ |
$2.215929094$ |
$1$ |
|
$5$ |
$5308416$ |
$2.561527$ |
$1343969093632/462866157$ |
$0.93614$ |
$4.34042$ |
$[0, 0, 0, -1506846, -453012991]$ |
\(y^2=x^3-1506846x-453012991\) |
2.3.0.a.1, 26.6.0.b.1, 204.6.0.?, 2652.12.0.? |
$[(-404, 9477)]$ |
270504.l2 |
270504l2 |
270504.l |
270504l |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{9} \cdot 13^{6} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2652$ |
$12$ |
$0$ |
$4.431858188$ |
$1$ |
|
$3$ |
$10616832$ |
$2.908100$ |
$2181636984368/2215505331$ |
$0.92209$ |
$4.60082$ |
$[0, 0, 0, 4462449, -3152328190]$ |
\(y^2=x^3+4462449x-3152328190\) |
2.3.0.a.1, 52.6.0.c.1, 102.6.0.?, 2652.12.0.? |
$[(14335, 1733940)]$ |
270504.m1 |
270504m2 |
270504.m |
270504m |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 13^{2} \cdot 17^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$5013504$ |
$2.260017$ |
$390224/169$ |
$0.74820$ |
$4.03822$ |
$[0, 0, 0, -427431, -53954566]$ |
\(y^2=x^3-427431x-53954566\) |
2.3.0.a.1, 34.6.0.a.1, 52.6.0.d.1, 884.12.0.? |
$[]$ |
270504.m2 |
270504m1 |
270504.m |
270504m |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{6} \cdot 13 \cdot 17^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$2506752$ |
$1.913443$ |
$702464/13$ |
$0.86582$ |
$3.86356$ |
$[0, 0, 0, -206346, 35496425]$ |
\(y^2=x^3-206346x+35496425\) |
2.3.0.a.1, 52.6.0.d.1, 68.6.0.c.1, 442.6.0.?, 884.12.0.? |
$[]$ |
270504.n1 |
270504n4 |
270504.n |
270504n |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{10} \cdot 3^{7} \cdot 13 \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$5304$ |
$48$ |
$0$ |
$23.85661491$ |
$1$ |
|
$1$ |
$14155776$ |
$2.758785$ |
$305612563186948/663$ |
$0.94496$ |
$5.10678$ |
$[0, 0, 0, -36789411, -85887975314]$ |
\(y^2=x^3-36789411x-85887975314\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 104.24.0.?, 408.24.0.?, 2652.24.0.?, $\ldots$ |
$[(22373479353/406, 3343172297272555/406)]$ |
270504.n2 |
270504n3 |
270504.n |
270504n |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{10} \cdot 3^{10} \cdot 13 \cdot 17^{10} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$5304$ |
$48$ |
$0$ |
$5.964153727$ |
$1$ |
|
$1$ |
$14155776$ |
$2.758785$ |
$161838334948/87947613$ |
$0.93419$ |
$4.50369$ |
$[0, 0, 0, -2976411, -487968986]$ |
\(y^2=x^3-2976411x-487968986\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 26.6.0.b.1, 52.12.0.g.1, $\ldots$ |
$[(-40681/5, 853128/5)]$ |
270504.n3 |
270504n2 |
270504.n |
270504n |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{8} \cdot 13^{2} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$2652$ |
$48$ |
$0$ |
$11.92830745$ |
$1$ |
|
$3$ |
$7077888$ |
$2.412212$ |
$298766385232/439569$ |
$0.93525$ |
$4.44187$ |
$[0, 0, 0, -2300151, -1341003350]$ |
\(y^2=x^3-2300151x-1341003350\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 52.24.0-52.b.1.3, 204.24.0.?, 2652.48.0.? |
$[(542721/2, 399795305/2)]$ |
270504.n4 |
270504n1 |
270504.n |
270504n |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{7} \cdot 13^{4} \cdot 17^{7} \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$5304$ |
$48$ |
$0$ |
$5.964153727$ |
$1$ |
|
$5$ |
$3538944$ |
$2.065639$ |
$-420616192/1456611$ |
$0.95470$ |
$3.85068$ |
$[0, 0, 0, -102306, -33285575]$ |
\(y^2=x^3-102306x-33285575\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 102.6.0.?, 104.24.0.?, 204.24.0.?, $\ldots$ |
$[(1713/2, 9607/2)]$ |
270504.o1 |
270504o1 |
270504.o |
270504o |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( - 2^{11} \cdot 3^{6} \cdot 13 \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1209600$ |
$1.572882$ |
$-235298/13$ |
$0.96559$ |
$3.49178$ |
$[0, 0, 0, -42483, 3527534]$ |
\(y^2=x^3-42483x+3527534\) |
104.2.0.? |
$[]$ |
270504.p1 |
270504p1 |
270504.p |
270504p |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{9} \cdot 13^{3} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$78$ |
$2$ |
$0$ |
$0.832814087$ |
$1$ |
|
$2$ |
$248832$ |
$0.857017$ |
$3172608/2197$ |
$0.75928$ |
$2.66201$ |
$[0, 0, 0, 1377, -8721]$ |
\(y^2=x^3+1377x-8721\) |
78.2.0.? |
$[(42, 351)]$ |
270504.q1 |
270504q1 |
270504.q |
270504q |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{10} \cdot 3^{9} \cdot 13 \cdot 17^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$156$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$428544$ |
$1.256882$ |
$31212/13$ |
$0.78811$ |
$3.07805$ |
$[0, 0, 0, -7803, 140454]$ |
\(y^2=x^3-7803x+140454\) |
156.2.0.? |
$[]$ |
270504.r1 |
270504r1 |
270504.r |
270504r |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{7} \cdot 13 \cdot 17^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$78$ |
$2$ |
$0$ |
$5.891891717$ |
$1$ |
|
$2$ |
$2976768$ |
$2.150871$ |
$-73984/39$ |
$0.69749$ |
$3.96190$ |
$[0, 0, 0, -250563, 66733279]$ |
\(y^2=x^3-250563x+66733279\) |
78.2.0.? |
$[(219, 4729)]$ |
270504.s1 |
270504s1 |
270504.s |
270504s |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{10} \cdot 3^{7} \cdot 13 \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$156$ |
$2$ |
$0$ |
$1.377426466$ |
$1$ |
|
$10$ |
$156672$ |
$0.868433$ |
$98116996/39$ |
$0.83308$ |
$3.00537$ |
$[0, 0, 0, -5763, 168334]$ |
\(y^2=x^3-5763x+168334\) |
156.2.0.? |
$[(47, 36), (2, 396)]$ |
270504.t1 |
270504t1 |
270504.t |
270504t |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{10} \cdot 3^{3} \cdot 13 \cdot 17^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$156$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$2428416$ |
$2.124180$ |
$31212/13$ |
$0.78811$ |
$3.91012$ |
$[0, 0, 0, -250563, -25557426]$ |
\(y^2=x^3-250563x-25557426\) |
156.2.0.? |
$[]$ |
270504.u1 |
270504u1 |
270504.u |
270504u |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 13^{3} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$78$ |
$2$ |
$0$ |
$1.056991538$ |
$1$ |
|
$2$ |
$1410048$ |
$1.724318$ |
$3172608/2197$ |
$0.75928$ |
$3.49409$ |
$[0, 0, 0, 44217, 1586899]$ |
\(y^2=x^3+44217x+1586899\) |
78.2.0.? |
$[(867, 26299)]$ |
270504.v1 |
270504v1 |
270504.v |
270504v |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 13^{2} \cdot 17^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.33 |
2B |
$1768$ |
$48$ |
$1$ |
$0.633878416$ |
$1$ |
|
$9$ |
$262144$ |
$1.027277$ |
$71874000/169$ |
$0.85011$ |
$3.09616$ |
$[0, 0, 0, -8415, 296514]$ |
\(y^2=x^3-8415x+296514\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.u.1, 34.6.0.a.1, 52.12.0.n.1, $\ldots$ |
$[(33, 234)]$ |
270504.v2 |
270504v2 |
270504.v |
270504v |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( - 2^{10} \cdot 3^{6} \cdot 13^{4} \cdot 17^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.5 |
2B |
$1768$ |
$48$ |
$1$ |
$1.267756832$ |
$1$ |
|
$7$ |
$524288$ |
$1.373850$ |
$-4630500/28561$ |
$0.99839$ |
$3.18411$ |
$[0, 0, 0, -5355, 514998]$ |
\(y^2=x^3-5355x+514998\) |
2.3.0.a.1, 4.12.0.e.1, 68.24.0.i.1, 104.24.0.?, 1768.48.1.? |
$[(67, 676)]$ |
270504.w1 |
270504w1 |
270504.w |
270504w |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( - 2^{11} \cdot 3^{7} \cdot 13^{3} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$312$ |
$2$ |
$0$ |
$5.724988833$ |
$1$ |
|
$2$ |
$6697728$ |
$2.492603$ |
$5656750/6591$ |
$0.83488$ |
$4.19280$ |
$[0, 0, 0, 810645, -282802106]$ |
\(y^2=x^3+810645x-282802106\) |
312.2.0.? |
$[(6218, 495144)]$ |
270504.x1 |
270504x2 |
270504.x |
270504x |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{10} \cdot 3^{10} \cdot 13 \cdot 17^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$4718592$ |
$2.339172$ |
$3822686500/304317$ |
$0.84928$ |
$4.20423$ |
$[0, 0, 0, -853995, -282094634]$ |
\(y^2=x^3-853995x-282094634\) |
2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? |
$[]$ |
270504.x2 |
270504x1 |
270504.x |
270504x |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{8} \cdot 13^{2} \cdot 17^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$2359296$ |
$1.992599$ |
$137842000/25857$ |
$0.78659$ |
$3.82776$ |
$[0, 0, 0, -177735, 23710138]$ |
\(y^2=x^3-177735x+23710138\) |
2.3.0.a.1, 34.6.0.a.1, 52.6.0.c.1, 884.12.0.? |
$[]$ |
270504.y1 |
270504y2 |
270504.y |
270504y |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{10} \cdot 3^{6} \cdot 13^{8} \cdot 17^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.18 |
2B |
$408$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$86900736$ |
$3.785915$ |
$93820226562500/815730721$ |
$1.09163$ |
$5.69190$ |
$[0, 0, 0, -421903875, -3310405114642]$ |
\(y^2=x^3-421903875x-3310405114642\) |
2.3.0.a.1, 4.6.0.d.1, 8.12.0.x.1, 34.6.0.a.1, 68.12.0.i.1, $\ldots$ |
$[]$ |
270504.y2 |
270504y1 |
270504.y |
270504y |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 13^{4} \cdot 17^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.18 |
2B |
$408$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$43450368$ |
$3.439342$ |
$372926004194000/28561$ |
$0.97953$ |
$5.69139$ |
$[0, 0, 0, -421019535, -3325075077166]$ |
\(y^2=x^3-421019535x-3325075077166\) |
2.3.0.a.1, 4.6.0.d.1, 8.12.0.x.1, 34.6.0.a.1, 68.12.0.i.1, $\ldots$ |
$[]$ |
270504.z1 |
270504z2 |
270504.z |
270504z |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{8} \cdot 13^{6} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$5.141101750$ |
$1$ |
|
$3$ |
$10616832$ |
$2.824436$ |
$1603530178000/738501777$ |
$0.92097$ |
$4.57620$ |
$[0, 0, 0, -4027215, -1405579822]$ |
\(y^2=x^3-4027215x-1405579822\) |
2.3.0.a.1, 34.6.0.a.1, 52.6.0.c.1, 884.12.0.? |
$[(6986, 558038)]$ |
270504.z2 |
270504z1 |
270504.z |
270504z |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{10} \cdot 13^{3} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$2.570550875$ |
$1$ |
|
$3$ |
$5308416$ |
$2.477863$ |
$3322336000000/51429573$ |
$0.98800$ |
$4.41278$ |
$[0, 0, 0, -2037450, 1104309749]$ |
\(y^2=x^3-2037450x+1104309749\) |
2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? |
$[(-935, 46818)]$ |
270504.ba1 |
270504ba2 |
270504.ba |
270504ba |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{10} \cdot 3^{22} \cdot 13^{3} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$15.55441153$ |
$1$ |
|
$1$ |
$84934656$ |
$3.818386$ |
$64122592551794500/27331783704693$ |
$0.99192$ |
$5.53420$ |
$[0, 0, 0, -218609715, -638562822082]$ |
\(y^2=x^3-218609715x-638562822082\) |
2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? |
$[(-11636173/31, 14386240744/31)]$ |
270504.ba2 |
270504ba1 |
270504.ba |
270504ba |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{14} \cdot 13^{6} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$7.777205765$ |
$1$ |
|
$3$ |
$42467328$ |
$3.471809$ |
$27873248949250000/538367795433$ |
$1.00820$ |
$5.35676$ |
$[0, 0, 0, -104321775, 403217466194]$ |
\(y^2=x^3-104321775x+403217466194\) |
2.3.0.a.1, 34.6.0.a.1, 52.6.0.c.1, 884.12.0.? |
$[(-10787, 522846)]$ |
270504.bb1 |
270504bb2 |
270504.bb |
270504bb |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{10} \cdot 3^{14} \cdot 13 \cdot 17^{12} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$8.512244658$ |
$1$ |
|
$3$ |
$56623104$ |
$3.733215$ |
$253674278705546500/2058765672717$ |
$0.98136$ |
$5.64415$ |
$[0, 0, 0, -345746595, 2457073435534]$ |
\(y^2=x^3-345746595x+2457073435534\) |
2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? |
$[(3195, 1176872)]$ |
270504.bb2 |
270504bb1 |
270504.bb |
270504bb |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{10} \cdot 13^{2} \cdot 17^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$4.256122329$ |
$1$ |
|
$5$ |
$28311552$ |
$3.386642$ |
$1008754689437602000/67254057$ |
$0.98116$ |
$5.64368$ |
$[0, 0, 0, -345070335, 2467229372962]$ |
\(y^2=x^3-345070335x+2467229372962\) |
2.3.0.a.1, 34.6.0.a.1, 52.6.0.c.1, 884.12.0.? |
$[(10709, 2826)]$ |
270504.bc1 |
270504bc1 |
270504.bc |
270504bc |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( 2^{10} \cdot 3^{8} \cdot 13^{4} \cdot 17^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$136$ |
$12$ |
$0$ |
$13.56118076$ |
$1$ |
|
$1$ |
$17694720$ |
$3.146515$ |
$315042014258500/1262881737$ |
$0.94524$ |
$5.10921$ |
$[0, 0, 0, -37163955, -86900367746]$ |
\(y^2=x^3-37163955x-86900367746\) |
2.3.0.a.1, 8.6.0.d.1, 34.6.0.a.1, 136.12.0.? |
$[(681980075/269, 12310618396032/269)]$ |
270504.bc2 |
270504bc2 |
270504.bc |
270504bc |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( - 2^{11} \cdot 3^{10} \cdot 13^{2} \cdot 17^{12} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$136$ |
$12$ |
$0$ |
$27.12236152$ |
$1$ |
|
$1$ |
$35389440$ |
$3.493088$ |
$-23040414103250/330419182041$ |
$0.98369$ |
$5.21532$ |
$[0, 0, 0, -19581195, -169338896282]$ |
\(y^2=x^3-19581195x-169338896282\) |
2.3.0.a.1, 8.6.0.a.1, 68.6.0.c.1, 136.12.0.? |
$[(85987606203809/40048, 794198541461663279601/40048)]$ |