Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
2800.a1 |
2800bb1 |
2800.a |
2800bb |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{8} \cdot 5^{9} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$1.117498663$ |
$1$ |
|
$4$ |
$2880$ |
$0.607533$ |
$-221184/7$ |
$0.91737$ |
$4.08071$ |
$[0, 0, 0, -1000, -12500]$ |
\(y^2=x^3-1000x-12500\) |
70.2.0.a.1 |
$[(50, 250)]$ |
2800.b1 |
2800r1 |
2800.b |
2800r |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{23} \cdot 5^{10} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$31680$ |
$1.734970$ |
$-1026590625/100352$ |
$1.12597$ |
$5.70941$ |
$[0, 0, 0, -71875, -8018750]$ |
\(y^2=x^3-71875x-8018750\) |
8.2.0.a.1 |
$[]$ |
2800.c1 |
2800h1 |
2800.c |
2800h |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{8} \cdot 5^{11} \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11520$ |
$1.196188$ |
$-30211716096/1071875$ |
$1.00205$ |
$4.96295$ |
$[0, 0, 0, -10300, -414500]$ |
\(y^2=x^3-10300x-414500\) |
70.2.0.a.1 |
$[]$ |
2800.d1 |
2800e1 |
2800.d |
2800e |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{4} \cdot 5^{10} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$3.656849735$ |
$1$ |
|
$2$ |
$1440$ |
$0.429152$ |
$-6400/7$ |
$0.69269$ |
$3.61483$ |
$[0, 1, 0, -208, -2037]$ |
\(y^2=x^3+x^2-208x-2037\) |
14.2.0.a.1 |
$[(29, 131)]$ |
2800.e1 |
2800w2 |
2800.e |
2800w |
$2$ |
$3$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{4} \cdot 5^{2} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$420$ |
$16$ |
$0$ |
$0.244242478$ |
$1$ |
|
$4$ |
$432$ |
$-0.107180$ |
$-262885120/343$ |
$0.89382$ |
$3.19765$ |
$[0, 1, 0, -98, 343]$ |
\(y^2=x^3+x^2-98x+343\) |
3.4.0.a.1, 14.2.0.a.1, 42.8.0.a.1, 60.8.0-3.a.1.1, 420.16.0.? |
$[(7, 7)]$ |
2800.e2 |
2800w1 |
2800.e |
2800w |
$2$ |
$3$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{4} \cdot 5^{2} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$420$ |
$16$ |
$0$ |
$0.732727436$ |
$1$ |
|
$2$ |
$144$ |
$-0.656486$ |
$1280/7$ |
$0.66250$ |
$1.92510$ |
$[0, 1, 0, 2, 3]$ |
\(y^2=x^3+x^2+2x+3\) |
3.4.0.a.1, 14.2.0.a.1, 42.8.0.a.1, 60.8.0-3.a.1.2, 420.16.0.? |
$[(-1, 1)]$ |
2800.f1 |
2800n1 |
2800.f |
2800n |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{4} \cdot 5^{8} \cdot 7^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$0.173012900$ |
$1$ |
|
$6$ |
$2400$ |
$0.802279$ |
$-6288640/16807$ |
$0.89388$ |
$4.16112$ |
$[0, 1, 0, -708, 16963]$ |
\(y^2=x^3+x^2-708x+16963\) |
14.2.0.a.1 |
$[(33, 175)]$ |
2800.g1 |
2800v6 |
2800.g |
2800v |
$6$ |
$18$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( 2^{21} \cdot 5^{6} \cdot 7^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.6, 9.12.0.1 |
2B, 3B |
$2520$ |
$864$ |
$21$ |
$1.027270605$ |
$1$ |
|
$5$ |
$20736$ |
$1.910967$ |
$2251439055699625/25088$ |
$1.06489$ |
$6.71818$ |
$[0, 1, 0, -1092208, 438981588]$ |
\(y^2=x^3+x^2-1092208x+438981588\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.b.1, 9.12.0.a.1, $\ldots$ |
$[(594, 384)]$ |
2800.g2 |
2800v5 |
2800.g |
2800v |
$6$ |
$18$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{30} \cdot 5^{6} \cdot 7 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.1, 9.12.0.1 |
2B, 3B |
$2520$ |
$864$ |
$21$ |
$2.054541211$ |
$1$ |
|
$3$ |
$10368$ |
$1.564394$ |
$-548347731625/1835008$ |
$1.02933$ |
$5.67068$ |
$[0, 1, 0, -68208, 6853588]$ |
\(y^2=x^3+x^2-68208x+6853588\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.c.1, 9.12.0.a.1, $\ldots$ |
$[(148, 150)]$ |
2800.g3 |
2800v4 |
2800.g |
2800v |
$6$ |
$18$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( 2^{15} \cdot 5^{6} \cdot 7^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.6, 3.12.0.1 |
2B, 3Cs |
$2520$ |
$864$ |
$21$ |
$0.342423535$ |
$1$ |
|
$13$ |
$6912$ |
$1.361662$ |
$4956477625/941192$ |
$1.00821$ |
$5.07704$ |
$[0, 1, 0, -14208, 529588]$ |
\(y^2=x^3+x^2-14208x+529588\) |
2.3.0.a.1, 3.12.0.a.1, 6.36.0.a.1, 8.6.0.b.1, 24.72.1.h.1, $\ldots$ |
$[(-6, 784)]$ |
2800.g4 |
2800v2 |
2800.g |
2800v |
$6$ |
$18$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( 2^{13} \cdot 5^{6} \cdot 7^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.6, 9.12.0.1 |
2B, 3B |
$2520$ |
$864$ |
$21$ |
$1.027270605$ |
$1$ |
|
$7$ |
$2304$ |
$0.812355$ |
$128787625/98$ |
$0.96763$ |
$4.61715$ |
$[0, 1, 0, -4208, -106412]$ |
\(y^2=x^3+x^2-4208x-106412\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.b.1, 9.12.0.a.1, $\ldots$ |
$[(-38, 8)]$ |
2800.g5 |
2800v1 |
2800.g |
2800v |
$6$ |
$18$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{14} \cdot 5^{6} \cdot 7 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.1, 9.12.0.1 |
2B, 3B |
$2520$ |
$864$ |
$21$ |
$2.054541211$ |
$1$ |
|
$5$ |
$1152$ |
$0.465781$ |
$-15625/28$ |
$1.01712$ |
$3.65879$ |
$[0, 1, 0, -208, -2412]$ |
\(y^2=x^3+x^2-208x-2412\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.c.1, 9.12.0.a.1, $\ldots$ |
$[(34, 176)]$ |
2800.g6 |
2800v3 |
2800.g |
2800v |
$6$ |
$18$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{18} \cdot 5^{6} \cdot 7^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.1, 3.12.0.1 |
2B, 3Cs |
$2520$ |
$864$ |
$21$ |
$0.684847070$ |
$1$ |
|
$9$ |
$3456$ |
$1.015087$ |
$9938375/21952$ |
$0.98695$ |
$4.42488$ |
$[0, 1, 0, 1792, 49588]$ |
\(y^2=x^3+x^2+1792x+49588\) |
2.3.0.a.1, 3.12.0.a.1, 6.36.0.a.1, 8.6.0.c.1, 14.6.0.b.1, $\ldots$ |
$[(28, 350)]$ |
2800.h1 |
2800z2 |
2800.h |
2800z |
$2$ |
$3$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{13} \cdot 5^{8} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$24$ |
$16$ |
$0$ |
$1.331707279$ |
$1$ |
|
$4$ |
$8640$ |
$1.500000$ |
$-417267265/235298$ |
$0.94642$ |
$5.25650$ |
$[0, -1, 0, -18208, 1334912]$ |
\(y^2=x^3-x^2-18208x+1334912\) |
3.4.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.2, 24.16.0-24.a.1.7 |
$[(58, 686)]$ |
2800.h2 |
2800z1 |
2800.h |
2800z |
$2$ |
$3$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{15} \cdot 5^{8} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$24$ |
$16$ |
$0$ |
$0.443902426$ |
$1$ |
|
$6$ |
$2880$ |
$0.950694$ |
$397535/392$ |
$1.09655$ |
$4.29441$ |
$[0, -1, 0, 1792, -25088]$ |
\(y^2=x^3-x^2+1792x-25088\) |
3.4.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.1, 24.16.0-24.a.1.5 |
$[(42, 350)]$ |
2800.i1 |
2800c1 |
2800.i |
2800c |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{8} \cdot 5^{7} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$0.857374442$ |
$1$ |
|
$2$ |
$768$ |
$0.243388$ |
$-1024/35$ |
$0.78213$ |
$3.30445$ |
$[0, -1, 0, -33, -563]$ |
\(y^2=x^3-x^2-33x-563\) |
70.2.0.a.1 |
$[(12, 25)]$ |
2800.j1 |
2800l1 |
2800.j |
2800l |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{11} \cdot 5^{8} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$0.100741783$ |
$1$ |
|
$10$ |
$2880$ |
$0.882195$ |
$-10303010/49$ |
$0.87392$ |
$4.61818$ |
$[0, -1, 0, -4208, 106912]$ |
\(y^2=x^3-x^2-4208x+106912\) |
8.2.0.a.1 |
$[(92, 700)]$ |
2800.k1 |
2800k1 |
2800.k |
2800k |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{8} \cdot 5^{9} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$0.984711418$ |
$1$ |
|
$2$ |
$1920$ |
$0.834789$ |
$1024/343$ |
$1.00277$ |
$4.19797$ |
$[0, -1, 0, 167, -19963]$ |
\(y^2=x^3-x^2+167x-19963\) |
70.2.0.a.1 |
$[(92, 875)]$ |
2800.l1 |
2800be2 |
2800.l |
2800be |
$2$ |
$5$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{12} \cdot 5^{9} \cdot 7^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$140$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$8000$ |
$1.552059$ |
$-2887553024/16807$ |
$0.98803$ |
$5.61853$ |
$[0, -1, 0, -59333, -5570963]$ |
\(y^2=x^3-x^2-59333x-5570963\) |
5.12.0.a.1, 20.24.0-5.a.1.1, 70.24.1.d.1, 140.48.1.? |
$[]$ |
2800.l2 |
2800be1 |
2800.l |
2800be |
$2$ |
$5$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{12} \cdot 5^{9} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$140$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$1600$ |
$0.747340$ |
$4096/7$ |
$0.98030$ |
$4.00509$ |
$[0, -1, 0, 667, 9037]$ |
\(y^2=x^3-x^2+667x+9037\) |
5.12.0.a.2, 20.24.0-5.a.2.1, 70.24.1.d.2, 140.48.1.? |
$[]$ |
2800.m1 |
2800o4 |
2800.m |
2800o |
$4$ |
$4$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( 2^{13} \cdot 5^{8} \cdot 7^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.15 |
2B |
$280$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$9216$ |
$1.536854$ |
$2121328796049/120050$ |
$1.01959$ |
$5.84040$ |
$[0, 0, 0, -107075, 13485250]$ |
\(y^2=x^3-107075x+13485250\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 20.12.0-4.c.1.2, 40.24.0-8.k.1.2, $\ldots$ |
$[]$ |
2800.m2 |
2800o3 |
2800.m |
2800o |
$4$ |
$4$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( 2^{13} \cdot 5^{14} \cdot 7 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$280$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$9216$ |
$1.536854$ |
$74565301329/5468750$ |
$0.99962$ |
$5.41858$ |
$[0, 0, 0, -35075, -2362750]$ |
\(y^2=x^3-35075x-2362750\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 40.24.0-8.p.1.2, 56.24.0.bp.1, $\ldots$ |
$[]$ |
2800.m3 |
2800o2 |
2800.m |
2800o |
$4$ |
$4$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( 2^{14} \cdot 5^{10} \cdot 7^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.3 |
2Cs |
$280$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$4608$ |
$1.190281$ |
$611960049/122500$ |
$1.02632$ |
$4.81350$ |
$[0, 0, 0, -7075, 185250]$ |
\(y^2=x^3-7075x+185250\) |
2.6.0.a.1, 8.12.0.a.1, 20.12.0-2.a.1.1, 28.12.0.b.1, 40.24.0-8.a.1.1, $\ldots$ |
$[]$ |
2800.m4 |
2800o1 |
2800.m |
2800o |
$4$ |
$4$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{16} \cdot 5^{8} \cdot 7 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$280$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$2304$ |
$0.843707$ |
$1367631/2800$ |
$1.00023$ |
$4.16186$ |
$[0, 0, 0, 925, 17250]$ |
\(y^2=x^3+925x+17250\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 14.6.0.b.1, 20.12.0-4.c.1.1, $\ldots$ |
$[]$ |
2800.n1 |
2800i1 |
2800.n |
2800i |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{4} \cdot 5^{4} \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$288$ |
$-0.061508$ |
$172800/343$ |
$1.09175$ |
$2.79162$ |
$[0, 0, 0, 25, -75]$ |
\(y^2=x^3+25x-75\) |
14.2.0.a.1 |
$[]$ |
2800.o1 |
2800x1 |
2800.o |
2800x |
$2$ |
$2$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( 2^{4} \cdot 5^{3} \cdot 7^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.37 |
2B |
$560$ |
$96$ |
$3$ |
$0.943091869$ |
$1$ |
|
$3$ |
$288$ |
$-0.148325$ |
$28311552/49$ |
$1.25294$ |
$3.11938$ |
$[0, 0, 0, -80, 275]$ |
\(y^2=x^3-80x+275\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.v.1, 10.6.0.a.1, 16.24.0.m.2, $\ldots$ |
$[(1, 14)]$ |
2800.o2 |
2800x2 |
2800.o |
2800x |
$2$ |
$2$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{8} \cdot 5^{3} \cdot 7^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.32 |
2B |
$560$ |
$96$ |
$3$ |
$1.886183738$ |
$1$ |
|
$3$ |
$576$ |
$0.198248$ |
$-574992/2401$ |
$1.20074$ |
$3.24309$ |
$[0, 0, 0, -55, 450]$ |
\(y^2=x^3-55x+450\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.s.1, 16.24.0.l.1, 20.12.0.l.1, $\ldots$ |
$[(10, 30)]$ |
2800.p1 |
2800a3 |
2800.p |
2800a |
$4$ |
$4$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( 2^{11} \cdot 5^{6} \cdot 7 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$280$ |
$48$ |
$0$ |
$3.113144371$ |
$1$ |
|
$3$ |
$2048$ |
$0.802686$ |
$1443468546/7$ |
$1.04654$ |
$4.83429$ |
$[0, 0, 0, -7475, -248750]$ |
\(y^2=x^3-7475x-248750\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 40.24.0-8.p.1.2, 56.24.0.bp.1, $\ldots$ |
$[(175, 1950)]$ |
2800.p2 |
2800a4 |
2800.p |
2800a |
$4$ |
$4$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( 2^{11} \cdot 5^{6} \cdot 7^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.15 |
2B |
$280$ |
$48$ |
$0$ |
$0.778286092$ |
$1$ |
|
$7$ |
$2048$ |
$0.802686$ |
$11090466/2401$ |
$1.11706$ |
$4.22090$ |
$[0, 0, 0, -1475, 17250]$ |
\(y^2=x^3-1475x+17250\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 20.12.0-4.c.1.2, 40.24.0-8.k.1.2, $\ldots$ |
$[(5, 100)]$ |
2800.p3 |
2800a2 |
2800.p |
2800a |
$4$ |
$4$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( 2^{10} \cdot 5^{6} \cdot 7^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.3 |
2Cs |
$280$ |
$48$ |
$0$ |
$1.556572185$ |
$1$ |
|
$9$ |
$1024$ |
$0.456112$ |
$740772/49$ |
$1.06534$ |
$3.79263$ |
$[0, 0, 0, -475, -3750]$ |
\(y^2=x^3-475x-3750\) |
2.6.0.a.1, 8.12.0.a.1, 20.12.0-2.a.1.1, 28.12.0.b.1, 40.24.0-8.a.1.1, $\ldots$ |
$[(-11, 12)]$ |
2800.p4 |
2800a1 |
2800.p |
2800a |
$4$ |
$4$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{8} \cdot 5^{6} \cdot 7 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$280$ |
$48$ |
$0$ |
$3.113144371$ |
$1$ |
|
$3$ |
$512$ |
$0.109539$ |
$432/7$ |
$0.89152$ |
$3.09499$ |
$[0, 0, 0, 25, -250]$ |
\(y^2=x^3+25x-250\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 14.6.0.b.1, 20.12.0-4.c.1.1, $\ldots$ |
$[(41, 264)]$ |
2800.q1 |
2800p1 |
2800.q |
2800p |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{4} \cdot 5^{2} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$144$ |
$-0.616075$ |
$-34560/7$ |
$0.61638$ |
$2.10926$ |
$[0, 0, 0, -5, -5]$ |
\(y^2=x^3-5x-5\) |
14.2.0.a.1 |
$[]$ |
2800.r1 |
2800f1 |
2800.r |
2800f |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{4} \cdot 5^{10} \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1440$ |
$0.743211$ |
$172800/343$ |
$1.09175$ |
$4.00822$ |
$[0, 0, 0, 625, -9375]$ |
\(y^2=x^3+625x-9375\) |
14.2.0.a.1 |
$[]$ |
2800.s1 |
2800bc1 |
2800.s |
2800bc |
$2$ |
$2$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( 2^{4} \cdot 5^{9} \cdot 7^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.37 |
2B |
$560$ |
$96$ |
$3$ |
$1$ |
$1$ |
|
$1$ |
$1440$ |
$0.656394$ |
$28311552/49$ |
$1.25294$ |
$4.33598$ |
$[0, 0, 0, -2000, 34375]$ |
\(y^2=x^3-2000x+34375\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.v.1, 10.6.0.a.1, 16.24.0.m.2, $\ldots$ |
$[]$ |
2800.s2 |
2800bc2 |
2800.s |
2800bc |
$2$ |
$2$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{8} \cdot 5^{9} \cdot 7^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.32 |
2B |
$560$ |
$96$ |
$3$ |
$1$ |
$1$ |
|
$1$ |
$2880$ |
$1.002968$ |
$-574992/2401$ |
$1.20074$ |
$4.45969$ |
$[0, 0, 0, -1375, 56250]$ |
\(y^2=x^3-1375x+56250\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.s.1, 16.24.0.l.1, 20.12.0.l.1, $\ldots$ |
$[]$ |
2800.t1 |
2800bd1 |
2800.t |
2800bd |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{4} \cdot 5^{8} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$720$ |
$0.188644$ |
$-34560/7$ |
$0.61638$ |
$3.32587$ |
$[0, 0, 0, -125, -625]$ |
\(y^2=x^3-125x-625\) |
14.2.0.a.1 |
$[]$ |
2800.u1 |
2800j1 |
2800.u |
2800j |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{8} \cdot 5^{3} \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$384$ |
$0.030070$ |
$1024/343$ |
$1.00277$ |
$2.98137$ |
$[0, 1, 0, 7, -157]$ |
\(y^2=x^3+x^2+7x-157\) |
70.2.0.a.1 |
$[]$ |
2800.v1 |
2800b1 |
2800.v |
2800b |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{11} \cdot 5^{2} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$0.361066246$ |
$1$ |
|
$4$ |
$576$ |
$0.077476$ |
$-10303010/49$ |
$0.87392$ |
$3.40158$ |
$[0, 1, 0, -168, 788]$ |
\(y^2=x^3+x^2-168x+788\) |
8.2.0.a.1 |
$[(4, 14)]$ |
2800.w1 |
2800y2 |
2800.w |
2800y |
$2$ |
$5$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{12} \cdot 5^{3} \cdot 7^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$140$ |
$48$ |
$1$ |
$5.422775418$ |
$1$ |
|
$2$ |
$1600$ |
$0.747340$ |
$-2887553024/16807$ |
$0.98803$ |
$4.40193$ |
$[0, 1, 0, -2373, -45517]$ |
\(y^2=x^3+x^2-2373x-45517\) |
5.12.0.a.1, 20.24.0-5.a.1.2, 70.24.1.d.1, 140.48.1.? |
$[(478, 10405)]$ |
2800.w2 |
2800y1 |
2800.w |
2800y |
$2$ |
$5$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{12} \cdot 5^{3} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$140$ |
$48$ |
$1$ |
$1.084555083$ |
$1$ |
|
$2$ |
$320$ |
$-0.057379$ |
$4096/7$ |
$0.98030$ |
$2.78849$ |
$[0, 1, 0, 27, 83]$ |
\(y^2=x^3+x^2+27x+83\) |
5.12.0.a.2, 20.24.0-5.a.2.2, 70.24.1.d.2, 140.48.1.? |
$[(-2, 5)]$ |
2800.x1 |
2800u2 |
2800.x |
2800u |
$2$ |
$3$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{13} \cdot 5^{2} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$0.140808212$ |
$1$ |
|
$6$ |
$1728$ |
$0.695282$ |
$-417267265/235298$ |
$0.94642$ |
$4.03989$ |
$[0, 1, 0, -728, 10388]$ |
\(y^2=x^3+x^2-728x+10388\) |
3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 60.8.0-3.a.1.1, 120.16.0.? |
$[(14, 56)]$ |
2800.x2 |
2800u1 |
2800.x |
2800u |
$2$ |
$3$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{15} \cdot 5^{2} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$0.422424637$ |
$1$ |
|
$4$ |
$576$ |
$0.145976$ |
$397535/392$ |
$1.09655$ |
$3.07780$ |
$[0, 1, 0, 72, -172]$ |
\(y^2=x^3+x^2+72x-172\) |
3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 60.8.0-3.a.1.2, 120.16.0.? |
$[(22, 112)]$ |
2800.y1 |
2800t2 |
2800.y |
2800t |
$2$ |
$3$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{8} \cdot 5^{7} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$420$ |
$16$ |
$0$ |
$0.264768265$ |
$1$ |
|
$4$ |
$3456$ |
$1.062265$ |
$-225637236736/1715$ |
$1.02937$ |
$5.20878$ |
$[0, 1, 0, -20133, 1092863]$ |
\(y^2=x^3+x^2-20133x+1092863\) |
3.4.0.a.1, 60.8.0-3.a.1.1, 70.2.0.a.1, 84.8.0.?, 210.8.0.?, $\ldots$ |
$[(103, 350)]$ |
2800.y2 |
2800t1 |
2800.y |
2800t |
$2$ |
$3$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{8} \cdot 5^{9} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$420$ |
$16$ |
$0$ |
$0.794304795$ |
$1$ |
|
$4$ |
$1152$ |
$0.512960$ |
$-65536/875$ |
$0.97204$ |
$3.71322$ |
$[0, 1, 0, -133, 2863]$ |
\(y^2=x^3+x^2-133x+2863\) |
3.4.0.a.1, 60.8.0-3.a.1.2, 70.2.0.a.1, 84.8.0.?, 210.8.0.?, $\ldots$ |
$[(3, 50)]$ |
2800.z1 |
2800s3 |
2800.z |
2800s |
$3$ |
$9$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{12} \cdot 5^{15} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1260$ |
$144$ |
$3$ |
$1.938813464$ |
$1$ |
|
$0$ |
$10368$ |
$1.625328$ |
$-250523582464/13671875$ |
$1.02112$ |
$5.58262$ |
$[0, 1, 0, -52533, 4830563]$ |
\(y^2=x^3+x^2-52533x+4830563\) |
3.4.0.a.1, 9.12.0.a.1, 60.8.0-3.a.1.1, 63.36.0.e.2, 70.2.0.a.1, $\ldots$ |
$[(1342/3, 15625/3)]$ |
2800.z2 |
2800s1 |
2800.z |
2800s |
$3$ |
$9$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{12} \cdot 5^{7} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1260$ |
$144$ |
$3$ |
$1.938813464$ |
$1$ |
|
$2$ |
$1152$ |
$0.526716$ |
$-262144/35$ |
$0.88715$ |
$3.86257$ |
$[0, 1, 0, -533, -5437]$ |
\(y^2=x^3+x^2-533x-5437\) |
3.4.0.a.1, 9.12.0.a.1, 60.8.0-3.a.1.2, 63.36.0.e.1, 70.2.0.a.1, $\ldots$ |
$[(38, 175)]$ |
2800.z3 |
2800s2 |
2800.z |
2800s |
$3$ |
$9$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{12} \cdot 5^{9} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$1260$ |
$144$ |
$3$ |
$0.646271154$ |
$1$ |
|
$2$ |
$3456$ |
$1.076021$ |
$71991296/42875$ |
$1.06493$ |
$4.54388$ |
$[0, 1, 0, 3467, 14563]$ |
\(y^2=x^3+x^2+3467x+14563\) |
3.12.0.a.1, 60.24.0-3.a.1.1, 63.36.0.b.1, 70.2.0.a.1, 84.24.0.?, $\ldots$ |
$[(78, 875)]$ |
2800.ba1 |
2800ba2 |
2800.ba |
2800ba |
$2$ |
$3$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{4} \cdot 5^{8} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$84$ |
$16$ |
$0$ |
$2.871090723$ |
$1$ |
|
$2$ |
$2160$ |
$0.697539$ |
$-262885120/343$ |
$0.89382$ |
$4.41425$ |
$[0, -1, 0, -2458, 47787]$ |
\(y^2=x^3-x^2-2458x+47787\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 14.2.0.a.1, 42.8.0.a.1, 84.16.0.? |
$[(33, 39)]$ |
2800.ba2 |
2800ba1 |
2800.ba |
2800ba |
$2$ |
$3$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{4} \cdot 5^{8} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$84$ |
$16$ |
$0$ |
$0.957030241$ |
$1$ |
|
$2$ |
$720$ |
$0.148233$ |
$1280/7$ |
$0.66250$ |
$3.14170$ |
$[0, -1, 0, 42, 287]$ |
\(y^2=x^3-x^2+42x+287\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 14.2.0.a.1, 42.8.0.a.1, 84.16.0.? |
$[(17, 75)]$ |
2800.bb1 |
2800d1 |
2800.bb |
2800d |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{4} \cdot 5^{2} \cdot 7^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$2.022493239$ |
$1$ |
|
$2$ |
$480$ |
$-0.002440$ |
$-6288640/16807$ |
$0.89388$ |
$2.94452$ |
$[0, -1, 0, -28, 147]$ |
\(y^2=x^3-x^2-28x+147\) |
14.2.0.a.1 |
$[(3, 9)]$ |