Learn more

Refine search


Results (1-50 of 56 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
2800.a1 2800.a \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $1.117498663$ $[0, 0, 0, -1000, -12500]$ \(y^2=x^3-1000x-12500\) 70.2.0.a.1
2800.b1 2800.b \( 2^{4} \cdot 5^{2} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -71875, -8018750]$ \(y^2=x^3-71875x-8018750\) 8.2.0.a.1
2800.c1 2800.c \( 2^{4} \cdot 5^{2} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -10300, -414500]$ \(y^2=x^3-10300x-414500\) 70.2.0.a.1
2800.d1 2800.d \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $3.656849735$ $[0, 1, 0, -208, -2037]$ \(y^2=x^3+x^2-208x-2037\) 14.2.0.a.1
2800.e1 2800.e \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $0.244242478$ $[0, 1, 0, -98, 343]$ \(y^2=x^3+x^2-98x+343\) 3.4.0.a.1, 14.2.0.a.1, 42.8.0.a.1, 60.8.0-3.a.1.1, 420.16.0.?
2800.e2 2800.e \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $0.732727436$ $[0, 1, 0, 2, 3]$ \(y^2=x^3+x^2+2x+3\) 3.4.0.a.1, 14.2.0.a.1, 42.8.0.a.1, 60.8.0-3.a.1.2, 420.16.0.?
2800.f1 2800.f \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $0.173012900$ $[0, 1, 0, -708, 16963]$ \(y^2=x^3+x^2-708x+16963\) 14.2.0.a.1
2800.g1 2800.g \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $1.027270605$ $[0, 1, 0, -1092208, 438981588]$ \(y^2=x^3+x^2-1092208x+438981588\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.b.1, 9.12.0.a.1, $\ldots$
2800.g2 2800.g \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $2.054541211$ $[0, 1, 0, -68208, 6853588]$ \(y^2=x^3+x^2-68208x+6853588\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.c.1, 9.12.0.a.1, $\ldots$
2800.g3 2800.g \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $0.342423535$ $[0, 1, 0, -14208, 529588]$ \(y^2=x^3+x^2-14208x+529588\) 2.3.0.a.1, 3.12.0.a.1, 6.36.0.a.1, 8.6.0.b.1, 24.72.1.h.1, $\ldots$
2800.g4 2800.g \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $1.027270605$ $[0, 1, 0, -4208, -106412]$ \(y^2=x^3+x^2-4208x-106412\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.b.1, 9.12.0.a.1, $\ldots$
2800.g5 2800.g \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $2.054541211$ $[0, 1, 0, -208, -2412]$ \(y^2=x^3+x^2-208x-2412\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.c.1, 9.12.0.a.1, $\ldots$
2800.g6 2800.g \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $0.684847070$ $[0, 1, 0, 1792, 49588]$ \(y^2=x^3+x^2+1792x+49588\) 2.3.0.a.1, 3.12.0.a.1, 6.36.0.a.1, 8.6.0.c.1, 14.6.0.b.1, $\ldots$
2800.h1 2800.h \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $1.331707279$ $[0, -1, 0, -18208, 1334912]$ \(y^2=x^3-x^2-18208x+1334912\) 3.4.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.2, 24.16.0-24.a.1.7
2800.h2 2800.h \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $0.443902426$ $[0, -1, 0, 1792, -25088]$ \(y^2=x^3-x^2+1792x-25088\) 3.4.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.1, 24.16.0-24.a.1.5
2800.i1 2800.i \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $0.857374442$ $[0, -1, 0, -33, -563]$ \(y^2=x^3-x^2-33x-563\) 70.2.0.a.1
2800.j1 2800.j \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $0.100741783$ $[0, -1, 0, -4208, 106912]$ \(y^2=x^3-x^2-4208x+106912\) 8.2.0.a.1
2800.k1 2800.k \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $0.984711418$ $[0, -1, 0, 167, -19963]$ \(y^2=x^3-x^2+167x-19963\) 70.2.0.a.1
2800.l1 2800.l \( 2^{4} \cdot 5^{2} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -59333, -5570963]$ \(y^2=x^3-x^2-59333x-5570963\) 5.12.0.a.1, 20.24.0-5.a.1.1, 70.24.1.d.1, 140.48.1.?
2800.l2 2800.l \( 2^{4} \cdot 5^{2} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 667, 9037]$ \(y^2=x^3-x^2+667x+9037\) 5.12.0.a.2, 20.24.0-5.a.2.1, 70.24.1.d.2, 140.48.1.?
2800.m1 2800.m \( 2^{4} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -107075, 13485250]$ \(y^2=x^3-107075x+13485250\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 20.12.0-4.c.1.2, 40.24.0-8.k.1.2, $\ldots$
2800.m2 2800.m \( 2^{4} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -35075, -2362750]$ \(y^2=x^3-35075x-2362750\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 40.24.0-8.p.1.2, 56.24.0.bp.1, $\ldots$
2800.m3 2800.m \( 2^{4} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -7075, 185250]$ \(y^2=x^3-7075x+185250\) 2.6.0.a.1, 8.12.0.a.1, 20.12.0-2.a.1.1, 28.12.0.b.1, 40.24.0-8.a.1.1, $\ldots$
2800.m4 2800.m \( 2^{4} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 925, 17250]$ \(y^2=x^3+925x+17250\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 14.6.0.b.1, 20.12.0-4.c.1.1, $\ldots$
2800.n1 2800.n \( 2^{4} \cdot 5^{2} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 25, -75]$ \(y^2=x^3+25x-75\) 14.2.0.a.1
2800.o1 2800.o \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $0.943091869$ $[0, 0, 0, -80, 275]$ \(y^2=x^3-80x+275\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.v.1, 10.6.0.a.1, 16.24.0.m.2, $\ldots$
2800.o2 2800.o \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $1.886183738$ $[0, 0, 0, -55, 450]$ \(y^2=x^3-55x+450\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.s.1, 16.24.0.l.1, 20.12.0.l.1, $\ldots$
2800.p1 2800.p \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $3.113144371$ $[0, 0, 0, -7475, -248750]$ \(y^2=x^3-7475x-248750\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 40.24.0-8.p.1.2, 56.24.0.bp.1, $\ldots$
2800.p2 2800.p \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $0.778286092$ $[0, 0, 0, -1475, 17250]$ \(y^2=x^3-1475x+17250\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 20.12.0-4.c.1.2, 40.24.0-8.k.1.2, $\ldots$
2800.p3 2800.p \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.556572185$ $[0, 0, 0, -475, -3750]$ \(y^2=x^3-475x-3750\) 2.6.0.a.1, 8.12.0.a.1, 20.12.0-2.a.1.1, 28.12.0.b.1, 40.24.0-8.a.1.1, $\ldots$
2800.p4 2800.p \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $3.113144371$ $[0, 0, 0, 25, -250]$ \(y^2=x^3+25x-250\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 14.6.0.b.1, 20.12.0-4.c.1.1, $\ldots$
2800.q1 2800.q \( 2^{4} \cdot 5^{2} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -5, -5]$ \(y^2=x^3-5x-5\) 14.2.0.a.1
2800.r1 2800.r \( 2^{4} \cdot 5^{2} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 625, -9375]$ \(y^2=x^3+625x-9375\) 14.2.0.a.1
2800.s1 2800.s \( 2^{4} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -2000, 34375]$ \(y^2=x^3-2000x+34375\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.v.1, 10.6.0.a.1, 16.24.0.m.2, $\ldots$
2800.s2 2800.s \( 2^{4} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1375, 56250]$ \(y^2=x^3-1375x+56250\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.s.1, 16.24.0.l.1, 20.12.0.l.1, $\ldots$
2800.t1 2800.t \( 2^{4} \cdot 5^{2} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -125, -625]$ \(y^2=x^3-125x-625\) 14.2.0.a.1
2800.u1 2800.u \( 2^{4} \cdot 5^{2} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 7, -157]$ \(y^2=x^3+x^2+7x-157\) 70.2.0.a.1
2800.v1 2800.v \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $0.361066246$ $[0, 1, 0, -168, 788]$ \(y^2=x^3+x^2-168x+788\) 8.2.0.a.1
2800.w1 2800.w \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $5.422775418$ $[0, 1, 0, -2373, -45517]$ \(y^2=x^3+x^2-2373x-45517\) 5.12.0.a.1, 20.24.0-5.a.1.2, 70.24.1.d.1, 140.48.1.?
2800.w2 2800.w \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $1.084555083$ $[0, 1, 0, 27, 83]$ \(y^2=x^3+x^2+27x+83\) 5.12.0.a.2, 20.24.0-5.a.2.2, 70.24.1.d.2, 140.48.1.?
2800.x1 2800.x \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $0.140808212$ $[0, 1, 0, -728, 10388]$ \(y^2=x^3+x^2-728x+10388\) 3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 60.8.0-3.a.1.1, 120.16.0.?
2800.x2 2800.x \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $0.422424637$ $[0, 1, 0, 72, -172]$ \(y^2=x^3+x^2+72x-172\) 3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 60.8.0-3.a.1.2, 120.16.0.?
2800.y1 2800.y \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $0.264768265$ $[0, 1, 0, -20133, 1092863]$ \(y^2=x^3+x^2-20133x+1092863\) 3.4.0.a.1, 60.8.0-3.a.1.1, 70.2.0.a.1, 84.8.0.?, 210.8.0.?, $\ldots$
2800.y2 2800.y \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $0.794304795$ $[0, 1, 0, -133, 2863]$ \(y^2=x^3+x^2-133x+2863\) 3.4.0.a.1, 60.8.0-3.a.1.2, 70.2.0.a.1, 84.8.0.?, 210.8.0.?, $\ldots$
2800.z1 2800.z \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $1.938813464$ $[0, 1, 0, -52533, 4830563]$ \(y^2=x^3+x^2-52533x+4830563\) 3.4.0.a.1, 9.12.0.a.1, 60.8.0-3.a.1.1, 63.36.0.e.2, 70.2.0.a.1, $\ldots$
2800.z2 2800.z \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $1.938813464$ $[0, 1, 0, -533, -5437]$ \(y^2=x^3+x^2-533x-5437\) 3.4.0.a.1, 9.12.0.a.1, 60.8.0-3.a.1.2, 63.36.0.e.1, 70.2.0.a.1, $\ldots$
2800.z3 2800.z \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $0.646271154$ $[0, 1, 0, 3467, 14563]$ \(y^2=x^3+x^2+3467x+14563\) 3.12.0.a.1, 60.24.0-3.a.1.1, 63.36.0.b.1, 70.2.0.a.1, 84.24.0.?, $\ldots$
2800.ba1 2800.ba \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $2.871090723$ $[0, -1, 0, -2458, 47787]$ \(y^2=x^3-x^2-2458x+47787\) 3.4.0.a.1, 12.8.0-3.a.1.2, 14.2.0.a.1, 42.8.0.a.1, 84.16.0.?
2800.ba2 2800.ba \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $0.957030241$ $[0, -1, 0, 42, 287]$ \(y^2=x^3-x^2+42x+287\) 3.4.0.a.1, 12.8.0-3.a.1.1, 14.2.0.a.1, 42.8.0.a.1, 84.16.0.?
2800.bb1 2800.bb \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $2.022493239$ $[0, -1, 0, -28, 147]$ \(y^2=x^3-x^2-28x+147\) 14.2.0.a.1
Next   displayed columns for results