Learn more

Refine search


Results (24 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-mm images
28749.a1 28749.a 37372 3 \cdot 7 \cdot 37^{2} 11 Z/2Z\Z/2\Z 3.5404817253.540481725 [1,1,1,282727,57610072][1, 1, 1, -282727, -57610072] y2+xy+y=x3+x2282727x57610072y^2+xy+y=x^3+x^2-282727x-57610072 2.3.0.a.1, 4.12.0-4.c.1.2, 74.6.0.?, 148.24.0.?, 168.24.0.?, \ldots
28749.a2 28749.a 37372 3 \cdot 7 \cdot 37^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 7.0809634517.080963451 [1,1,1,29462,438266][1, 1, 1, -29462, 438266] y2+xy+y=x3+x229462x+438266y^2+xy+y=x^3+x^2-29462x+438266 2.6.0.a.1, 4.12.0-2.a.1.1, 84.24.0.?, 148.24.0.?, 3108.48.0.?
28749.a3 28749.a 37372 3 \cdot 7 \cdot 37^{2} 11 Z/4Z\Z/4\Z 14.1619269014.16192690 [1,1,1,22617,1297998][1, 1, 1, -22617, 1297998] y2+xy+y=x3+x222617x+1297998y^2+xy+y=x^3+x^2-22617x+1297998 2.3.0.a.1, 4.12.0-4.c.1.1, 168.24.0.?, 296.24.0.?, 1554.6.0.?, \ldots
28749.a4 28749.a 37372 3 \cdot 7 \cdot 37^{2} 11 Z/2Z\Z/2\Z 3.5404817253.540481725 [1,1,1,114283,3600656][1, 1, 1, 114283, 3600656] y2+xy+y=x3+x2+114283x+3600656y^2+xy+y=x^3+x^2+114283x+3600656 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 84.12.0.?, 148.12.0.?, \ldots
28749.b1 28749.b 37372 3 \cdot 7 \cdot 37^{2} 00 Z/2Z\Z/2\Z 11 [1,0,0,3575172,1185634485][1, 0, 0, -3575172, 1185634485] y2+xy=x33575172x+1185634485y^2+xy=x^3-3575172x+1185634485 2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 28.12.0-4.c.1.1, 148.12.0.?, \ldots
28749.b2 28749.b 37372 3 \cdot 7 \cdot 37^{2} 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,0,0,1802317,918744400][1, 0, 0, -1802317, -918744400] y2+xy=x31802317x918744400y^2+xy=x^3-1802317x-918744400 2.6.0.a.1, 12.12.0.b.1, 28.12.0-2.a.1.1, 84.24.0.?, 148.12.0.?, \ldots
28749.b3 28749.b 37372 3 \cdot 7 \cdot 37^{2} 00 Z/2Z\Z/2\Z 11 [1,0,0,1795472,926160273][1, 0, 0, -1795472, -926160273] y2+xy=x31795472x926160273y^2+xy=x^3-1795472x-926160273 2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 28.12.0-4.c.1.2, 168.24.0.?, \ldots
28749.b4 28749.b 37372 3 \cdot 7 \cdot 37^{2} 00 Z/2Z\Z/2\Z 11 [1,0,0,138982,2548480033][1, 0, 0, -138982, -2548480033] y2+xy=x3138982x2548480033y^2+xy=x^3-138982x-2548480033 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 56.12.0-4.c.1.5, \ldots
28749.c1 28749.c 37372 3 \cdot 7 \cdot 37^{2} 00 trivial\mathsf{trivial} 11 [0,1,1,231817,42884445][0, -1, 1, -231817, -42884445] y2+y=x3x2231817x42884445y^2+y=x^3-x^2-231817x-42884445 518.2.0.?
28749.d1 28749.d 37372 3 \cdot 7 \cdot 37^{2} 11 trivial\mathsf{trivial} 0.4063745900.406374590 [0,1,1,49,128][0, 1, 1, -49, -128] y2+y=x3+x249x128y^2+y=x^3+x^2-49x-128 42.2.0.a.1
28749.e1 28749.e 37372 3 \cdot 7 \cdot 37^{2} 11 trivial\mathsf{trivial} 0.6467834670.646783467 [0,1,1,11865,17293043][0, 1, 1, 11865, 17293043] y2+y=x3+x2+11865x+17293043y^2+y=x^3+x^2+11865x+17293043 518.2.0.?
28749.f1 28749.f 37372 3 \cdot 7 \cdot 37^{2} 11 trivial\mathsf{trivial} 4.4319901294.431990129 [0,1,1,67537,5662349][0, 1, 1, -67537, -5662349] y2+y=x3+x267537x5662349y^2+y=x^3+x^2-67537x-5662349 42.2.0.a.1
28749.g1 28749.g 37372 3 \cdot 7 \cdot 37^{2} 00 Z/2Z\Z/2\Z 11 [1,1,0,5673164,5198628123][1, 1, 0, -5673164, 5198628123] y2+xy=x3+x25673164x+5198628123y^2+xy=x^3+x^2-5673164x+5198628123 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 56.12.0.ba.1, 168.24.0.?, \ldots
28749.g2 28749.g 37372 3 \cdot 7 \cdot 37^{2} 00 Z/2Z\Z/2\Z 11 [1,1,0,402514,57712777][1, 1, 0, -402514, 57712777] y2+xy=x3+x2402514x+57712777y^2+xy=x^3+x^2-402514x+57712777 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 28.12.0.h.1, 148.12.0.?, \ldots
28749.g3 28749.g 37372 3 \cdot 7 \cdot 37^{2} 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,1,0,354599,81104880][1, 1, 0, -354599, 81104880] y2+xy=x3+x2354599x+81104880y^2+xy=x^3+x^2-354599x+81104880 2.6.0.a.1, 12.12.0-2.a.1.1, 28.12.0.a.1, 84.24.0.?, 148.12.0.?, \ldots
28749.g4 28749.g 37372 3 \cdot 7 \cdot 37^{2} 00 Z/2Z\Z/2\Z 11 [1,1,0,19194,1613895][1, 1, 0, -19194, 1613895] y2+xy=x3+x219194x+1613895y^2+xy=x^3+x^2-19194x+1613895 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 56.12.0.ba.1, 148.12.0.?, \ldots
28749.h1 28749.h 37372 3 \cdot 7 \cdot 37^{2} 00 Z/2Z\Z/2\Z 11 [1,0,1,1073325,428090351][1, 0, 1, -1073325, -428090351] y2+xy+y=x31073325x428090351y^2+xy+y=x^3-1073325x-428090351 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 12.12.0.h.1, 16.24.0.e.2, \ldots
28749.h2 28749.h 37372 3 \cdot 7 \cdot 37^{2} 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,0,1,67110,6687509][1, 0, 1, -67110, -6687509] y2+xy+y=x367110x6687509y^2+xy+y=x^3-67110x-6687509 2.6.0.a.1, 4.12.0.b.1, 8.24.0.e.1, 12.24.0.c.1, 24.48.0.j.2, \ldots
28749.h3 28749.h 37372 3 \cdot 7 \cdot 37^{2} 00 Z/2Z\Z/2\Z 11 [1,0,1,53420,4718999][1, 0, 1, -53420, 4718999] y2+xy+y=x353420x+4718999y^2+xy+y=x^3-53420x+4718999 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 28.12.0.h.1, 48.48.0.bf.1, \ldots
28749.h4 28749.h 37372 3 \cdot 7 \cdot 37^{2} 00 Z/2Z\Z/2\Z 11 [1,0,1,46575,10852007][1, 0, 1, -46575, -10852007] y2+xy+y=x346575x10852007y^2+xy+y=x^3-46575x-10852007 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.bb.2, 12.12.0.g.1, \ldots
28749.h5 28749.h 37372 3 \cdot 7 \cdot 37^{2} 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,0,1,5505,34169][1, 0, 1, -5505, -34169] y2+xy+y=x35505x34169y^2+xy+y=x^3-5505x-34169 2.6.0.a.1, 4.12.0.b.1, 8.24.0.e.2, 24.48.0.w.2, 28.24.0.c.1, \ldots
28749.h6 28749.h 37372 3 \cdot 7 \cdot 37^{2} 00 Z/2Z\Z/2\Z 11 [1,0,1,1340,4051][1, 0, 1, 1340, -4051] y2+xy+y=x3+1340x4051y^2+xy+y=x^3+1340x-4051 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 14.6.0.b.1, 16.24.0.e.1, \ldots
28749.i1 28749.i 37372 3 \cdot 7 \cdot 37^{2} 11 trivial\mathsf{trivial} 19.5853974719.58539747 [0,1,1,3466240006,78557325749583][0, -1, 1, -3466240006, 78557325749583] y2+y=x3x23466240006x+78557325749583y^2+y=x^3-x^2-3466240006x+78557325749583 518.2.0.?
28749.j1 28749.j 37372 3 \cdot 7 \cdot 37^{2} 00 trivial\mathsf{trivial} 11 [0,1,1,456,117569][0, 1, 1, -456, 117569] y2+y=x3+x2456x+117569y^2+y=x^3+x^2-456x+117569 518.2.0.?
  displayed columns for results