Learn more

Refine search


Results (1-50 of 81 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
3120.a1 3120.a \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -1384456, -626537744]$ \(y^2=x^3-x^2-1384456x-626537744\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 12.12.0-4.c.1.2, 24.24.0-24.s.1.3, $\ldots$
3120.a2 3120.a \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -99336, -6673680]$ \(y^2=x^3-x^2-99336x-6673680\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 20.12.0-4.c.1.2, 24.24.0-24.y.1.16, $\ldots$
3120.a3 3120.a \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -86536, -9766160]$ \(y^2=x^3-x^2-86536x-9766160\) 2.6.0.a.1, 8.12.0-2.a.1.1, 12.12.0-2.a.1.1, 20.12.0-2.a.1.1, 24.24.0-24.b.1.3, $\ldots$
3120.a4 3120.a \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -4616, -197904]$ \(y^2=x^3-x^2-4616x-197904\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 12.12.0-4.c.1.1, 20.12.0-4.c.1.1, $\ldots$
3120.b1 3120.b \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $1$ $\Z/2\Z$ $0.343106291$ $[0, -1, 0, -19136, 973440]$ \(y^2=x^3-x^2-19136x+973440\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.9, 40.6.0.b.1, $\ldots$
3120.b2 3120.b \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $1$ $\Z/2\Z$ $1.029318873$ $[0, -1, 0, -3296, -71424]$ \(y^2=x^3-x^2-3296x-71424\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.3, 40.6.0.b.1, $\ldots$
3120.b3 3120.b \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $1$ $\Z/2\Z$ $2.058637746$ $[0, -1, 0, -96, -2304]$ \(y^2=x^3-x^2-96x-2304\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.3, 40.6.0.c.1, $\ldots$
3120.b4 3120.b \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $1$ $\Z/2\Z$ $0.686212582$ $[0, -1, 0, 864, 61440]$ \(y^2=x^3-x^2+864x+61440\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.9, 40.6.0.c.1, $\ldots$
3120.c1 3120.c \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $1$ $\Z/2\Z$ $1.198913471$ $[0, -1, 0, -9896, 183696]$ \(y^2=x^3-x^2-9896x+183696\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 20.12.0-4.c.1.2, 40.24.0-40.v.1.2, $\ldots$
3120.c2 3120.c \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.397826943$ $[0, -1, 0, -4896, -128304]$ \(y^2=x^3-x^2-4896x-128304\) 2.6.0.a.1, 8.12.0-2.a.1.1, 20.12.0-2.a.1.1, 40.24.0-40.a.1.2, 52.12.0-2.a.1.1, $\ldots$
3120.c3 3120.c \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $1$ $\Z/2\Z$ $4.795653886$ $[0, -1, 0, -4876, -129440]$ \(y^2=x^3-x^2-4876x-129440\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 20.12.0-4.c.1.1, 40.24.0-40.bb.1.1, $\ldots$
3120.c4 3120.c \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $1$ $\Z/2\Z$ $4.795653886$ $[0, -1, 0, -216, -367920]$ \(y^2=x^3-x^2-216x-367920\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 40.24.0-40.bb.1.6, 52.12.0-4.c.1.2, $\ldots$
3120.d1 3120.d \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -1061, 21261]$ \(y^2=x^3-x^2-1061x+21261\) 390.2.0.?
3120.e1 3120.e \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.270963723$ $[0, -1, 0, -221, 1521]$ \(y^2=x^3-x^2-221x+1521\) 3.4.0.a.1, 12.8.0-3.a.1.2, 390.8.0.?, 780.16.0.?
3120.e2 3120.e \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.812891171$ $[0, -1, 0, 19, -15]$ \(y^2=x^3-x^2+19x-15\) 3.4.0.a.1, 12.8.0-3.a.1.1, 390.8.0.?, 780.16.0.?
3120.f1 3120.f \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 9719, -245915]$ \(y^2=x^3-x^2+9719x-245915\) 390.2.0.?
3120.g1 3120.g \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -81, 0]$ \(y^2=x^3-x^2-81x\) 2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.2, 26.6.0.b.1, 52.12.0.e.1, $\ldots$
3120.g2 3120.g \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 324, -324]$ \(y^2=x^3-x^2+324x-324\) 2.3.0.a.1, 4.6.0.a.1, 8.12.0-4.a.1.1, 52.12.0.d.1, 104.24.0.?, $\ldots$
3120.h1 3120.h \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $0$ $\Z/4\Z$ $1$ $[0, -1, 0, -1656, 26400]$ \(y^2=x^3-x^2-1656x+26400\) 2.3.0.a.1, 4.12.0-4.c.1.1, 12.24.0-12.h.1.2, 104.24.0.?, 312.48.0.?
3120.h2 3120.h \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -156, 0]$ \(y^2=x^3-x^2-156x\) 2.6.0.a.1, 4.12.0-2.a.1.1, 12.24.0-12.a.1.1, 52.24.0-52.b.1.2, 156.48.0.?
3120.h3 3120.h \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -111, -414]$ \(y^2=x^3-x^2-111x-414\) 2.3.0.a.1, 4.12.0-4.c.1.2, 24.24.0-24.ba.1.16, 26.6.0.b.1, 52.24.0-52.g.1.1, $\ldots$
3120.h4 3120.h \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 624, -624]$ \(y^2=x^3-x^2+624x-624\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 12.12.0-4.c.1.2, 24.24.0-24.ba.1.4, $\ldots$
3120.i1 3120.i \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $1$ $\Z/4\Z$ $2.947029457$ $[0, -1, 0, -561600, 162177552]$ \(y^2=x^3-x^2-561600x+162177552\) 2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.o.1.1, 16.48.0-16.i.1.1, 26.6.0.b.1, $\ldots$
3120.i2 3120.i \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.473514728$ $[0, -1, 0, -35100, 2542752]$ \(y^2=x^3-x^2-35100x+2542752\) 2.6.0.a.1, 4.24.0-4.a.1.1, 8.48.0-8.g.1.1, 52.48.0-52.b.1.1, 104.96.1.?, $\ldots$
3120.i3 3120.i \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $1$ $\Z/4\Z$ $0.736757364$ $[0, -1, 0, -33480, 2786400]$ \(y^2=x^3-x^2-33480x+2786400\) 2.3.0.a.1, 4.48.0-4.c.1.1, 104.96.1.?, 1040.192.3.?
3120.i4 3120.i \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $1$ $\Z/2\Z$ $2.947029457$ $[0, -1, 0, -2295, 36450]$ \(y^2=x^3-x^2-2295x+36450\) 2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.o.1.3, 16.48.0-16.i.1.3, 26.6.0.b.1, $\ldots$
3120.j1 3120.j \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -13961240, 20083149552]$ \(y^2=x^3-x^2-13961240x+20083149552\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.9, 40.6.0.b.1, $\ldots$
3120.j2 3120.j \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -854040, 327977712]$ \(y^2=x^3-x^2-854040x+327977712\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.9, 40.6.0.c.1, $\ldots$
3120.j3 3120.j \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -256040, -1791888]$ \(y^2=x^3-x^2-256040x-1791888\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.3, 40.6.0.b.1, $\ldots$
3120.j4 3120.j \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 63960, -255888]$ \(y^2=x^3-x^2+63960x-255888\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.3, 40.6.0.c.1, $\ldots$
3120.k1 3120.k \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $0$ $\Z/4\Z$ $1$ $[0, -1, 0, -2080000, 1155324352]$ \(y^2=x^3-x^2-2080000x+1155324352\) 2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.n.1.2, 16.48.0-16.g.1.2, 24.48.0-24.by.1.3, $\ldots$
3120.k2 3120.k \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[0, -1, 0, -130000, 18084352]$ \(y^2=x^3-x^2-130000x+18084352\) 2.6.0.a.1, 4.24.0-4.b.1.3, 8.48.0-8.i.1.10, 24.96.0-24.bb.1.3, 80.96.0.?, $\ldots$
3120.k3 3120.k \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $0$ $\Z/4\Z$ $1$ $[0, -1, 0, -126880, 18990400]$ \(y^2=x^3-x^2-126880x+18990400\) 2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.n.1.2, 16.48.0-16.g.1.2, 24.48.0-24.bz.2.3, $\ldots$
3120.k4 3120.k \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[0, -1, 0, -8320, 270400]$ \(y^2=x^3-x^2-8320x+270400\) 2.6.0.a.1, 4.48.0-4.b.1.1, 24.96.0-24.b.1.11, 40.96.0-40.b.2.2, 104.96.0.?, $\ldots$
3120.k5 3120.k \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -1840, -25088]$ \(y^2=x^3-x^2-1840x-25088\) 2.6.0.a.1, 4.24.0-4.b.1.1, 8.48.0-8.i.1.2, 40.96.0-40.bc.2.3, 48.96.0-48.d.1.2, $\ldots$
3120.k6 3120.k \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -1760, -27840]$ \(y^2=x^3-x^2-1760x-27840\) 2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.n.1.6, 16.48.0-16.g.1.6, 40.48.0-40.cb.2.3, $\ldots$
3120.k7 3120.k \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 3360, -145728]$ \(y^2=x^3-x^2+3360x-145728\) 2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.n.1.6, 16.48.0-16.g.1.6, 40.48.0-40.ca.1.11, $\ldots$
3120.k8 3120.k \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $0$ $\Z/4\Z$ $1$ $[0, -1, 0, 9680, 1264000]$ \(y^2=x^3-x^2+9680x+1264000\) 2.3.0.a.1, 4.24.0-4.d.1.1, 8.48.0-8.q.1.2, 24.96.0-24.be.2.3, 40.96.0-40.bf.1.7, $\ldots$
3120.l1 3120.l \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $1$ $\Z/2\Z$ $0.639413633$ $[0, -1, 0, -200, -1008]$ \(y^2=x^3-x^2-200x-1008\) 2.3.0.a.1, 40.6.0.b.1, 156.6.0.?, 1560.12.0.?
3120.l2 3120.l \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $1$ $\Z/2\Z$ $1.278827266$ $[0, -1, 0, 0, -48]$ \(y^2=x^3-x^2-48\) 2.3.0.a.1, 40.6.0.c.1, 78.6.0.?, 1560.12.0.?
3120.m1 3120.m \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -105, -603]$ \(y^2=x^3-x^2-105x-603\) 390.2.0.?
3120.n1 3120.n \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -5, 45]$ \(y^2=x^3-x^2-5x+45\) 390.2.0.?
3120.o1 3120.o \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $1$ $\Z/2\Z$ $0.225607083$ $[0, 1, 0, -736, 6644]$ \(y^2=x^3+x^2-736x+6644\) 2.3.0.a.1, 40.6.0.b.1, 156.6.0.?, 1560.12.0.?
3120.o2 3120.o \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $1$ $\Z/2\Z$ $0.451214167$ $[0, 1, 0, 64, 564]$ \(y^2=x^3+x^2+64x+564\) 2.3.0.a.1, 40.6.0.c.1, 78.6.0.?, 1560.12.0.?
3120.p1 3120.p \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $1$ $\Z/2\Z$ $1.135611600$ $[0, 1, 0, -5816, -172620]$ \(y^2=x^3+x^2-5816x-172620\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0-4.c.1.1, 104.12.0.?, $\ldots$
3120.p2 3120.p \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $1$ $\Z/2\Z$ $0.283902900$ $[0, 1, 0, -3016, 61460]$ \(y^2=x^3+x^2-3016x+61460\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0-4.c.1.2, 52.12.0-4.c.1.2, $\ldots$
3120.p3 3120.p \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.567805800$ $[0, 1, 0, -416, -1980]$ \(y^2=x^3+x^2-416x-1980\) 2.6.0.a.1, 12.12.0-2.a.1.1, 40.12.0-2.a.1.1, 52.12.0-2.a.1.1, 120.24.0.?, $\ldots$
3120.p4 3120.p \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $1$ $\Z/2\Z$ $1.135611600$ $[0, 1, 0, 84, -180]$ \(y^2=x^3+x^2+84x-180\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0-4.c.1.4, 52.12.0-4.c.1.1, $\ldots$
3120.q1 3120.q \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $1$ $\Z/2\Z$ $1.510835705$ $[0, 1, 0, -7736, 259284]$ \(y^2=x^3+x^2-7736x+259284\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 20.12.0-4.c.1.2, 40.24.0-40.v.1.2, $\ldots$
3120.q2 3120.q \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.755417852$ $[0, 1, 0, -536, 2964]$ \(y^2=x^3+x^2-536x+2964\) 2.6.0.a.1, 8.12.0-2.a.1.1, 20.12.0-2.a.1.1, 40.24.0-40.a.1.2, 52.12.0-2.a.1.1, $\ldots$
Next   displayed columns for results