Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
320892.a1 |
320892a1 |
320892.a |
320892a |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{12} \cdot 11^{6} \cdot 13 \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$58344$ |
$48$ |
$0$ |
$1.524962259$ |
$1$ |
|
$7$ |
$2419200$ |
$1.921574$ |
$7107347955712/1996623837$ |
$0.97060$ |
$3.68741$ |
$[0, -1, 0, -122129, -11743422]$ |
\(y^2=x^3-x^2-122129x-11743422\) |
2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 264.12.0.?, $\ldots$ |
$[(-227, 2057)]$ |
320892.a2 |
320892a2 |
320892.a |
320892a |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{6} \cdot 11^{6} \cdot 13^{2} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$58344$ |
$48$ |
$0$ |
$0.762481129$ |
$1$ |
|
$11$ |
$4838400$ |
$2.268147$ |
$7909612346288/10289870721$ |
$0.93265$ |
$3.93199$ |
$[0, -1, 0, 318916, -77547336]$ |
\(y^2=x^3-x^2+318916x-77547336\) |
2.3.0.a.1, 4.6.0.a.1, 52.12.0.d.1, 264.12.0.?, 1768.24.0.?, $\ldots$ |
$[(434, 11934)]$ |
320892.b1 |
320892b1 |
320892.b |
320892b |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3 \cdot 11^{8} \cdot 13 \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1326$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$443520$ |
$1.059654$ |
$965888/663$ |
$0.63162$ |
$2.81859$ |
$[0, -1, 0, 3106, -29775]$ |
\(y^2=x^3-x^2+3106x-29775\) |
1326.2.0.? |
$[]$ |
320892.c1 |
320892c1 |
320892.c |
320892c |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1326$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$40320$ |
$-0.139293$ |
$965888/663$ |
$0.63162$ |
$1.68384$ |
$[0, -1, 0, 26, 13]$ |
\(y^2=x^3-x^2+26x+13\) |
1326.2.0.? |
$[]$ |
320892.d1 |
320892d1 |
320892.d |
320892d |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{10} \cdot 11^{9} \cdot 13^{4} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$374$ |
$2$ |
$0$ |
$2.137525961$ |
$1$ |
|
$0$ |
$32486400$ |
$3.112740$ |
$-7315005991668416512/38160401310603$ |
$1.01708$ |
$4.99871$ |
$[0, -1, 0, -31071509, 66974196225]$ |
\(y^2=x^3-x^2-31071509x+66974196225\) |
374.2.0.? |
$[(11357/2, 323433/2)]$ |
320892.e1 |
320892e1 |
320892.e |
320892e |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{4} \cdot 11^{8} \cdot 13 \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1290240$ |
$1.640392$ |
$733001728000/36822357$ |
$0.85798$ |
$3.50823$ |
$[0, -1, 0, -57273, 5060574]$ |
\(y^2=x^3-x^2-57273x+5060574\) |
2.3.0.a.1, 26.6.0.b.1, 68.6.0.b.1, 884.12.0.? |
$[]$ |
320892.e2 |
320892e2 |
320892.e |
320892e |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{2} \cdot 11^{10} \cdot 13^{2} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$2580480$ |
$1.986967$ |
$10718750000/378572337$ |
$0.96379$ |
$3.71663$ |
$[0, -1, 0, 35292, 19759896]$ |
\(y^2=x^3-x^2+35292x+19759896\) |
2.3.0.a.1, 52.6.0.c.1, 68.6.0.a.1, 884.12.0.? |
$[]$ |
320892.f1 |
320892f1 |
320892.f |
320892f |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{2} \cdot 11^{6} \cdot 13 \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$368640$ |
$1.027006$ |
$256000000/33813$ |
$0.93430$ |
$2.88044$ |
$[0, -1, 0, -4033, 87958]$ |
\(y^2=x^3-x^2-4033x+87958\) |
2.3.0.a.1, 26.6.0.b.1, 68.6.0.b.1, 884.12.0.? |
$[]$ |
320892.f2 |
320892f2 |
320892.f |
320892f |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{4} \cdot 11^{6} \cdot 13^{2} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$737280$ |
$1.373581$ |
$59582000/232713$ |
$0.82425$ |
$3.12208$ |
$[0, -1, 0, 6252, 454104]$ |
\(y^2=x^3-x^2+6252x+454104\) |
2.3.0.a.1, 52.6.0.c.1, 68.6.0.a.1, 884.12.0.? |
$[]$ |
320892.g1 |
320892g1 |
320892.g |
320892g |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3 \cdot 11^{7} \cdot 13 \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$29172$ |
$12$ |
$0$ |
$3.305508236$ |
$1$ |
|
$3$ |
$645120$ |
$1.240768$ |
$17903239168/123981$ |
$0.93857$ |
$3.21545$ |
$[0, -1, 0, -16617, 825090]$ |
\(y^2=x^3-x^2-16617x+825090\) |
2.3.0.a.1, 68.6.0.b.1, 858.6.0.?, 29172.12.0.? |
$[(-83, 1275)]$ |
320892.g2 |
320892g2 |
320892.g |
320892g |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{2} \cdot 11^{8} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$29172$ |
$12$ |
$0$ |
$1.652754118$ |
$1$ |
|
$3$ |
$1290240$ |
$1.587343$ |
$-61918288/3128697$ |
$0.80305$ |
$3.34058$ |
$[0, -1, 0, -6332, 1824792]$ |
\(y^2=x^3-x^2-6332x+1824792\) |
2.3.0.a.1, 68.6.0.a.1, 1716.6.0.?, 29172.12.0.? |
$[(158, 2178)]$ |
320892.h1 |
320892h2 |
320892.h |
320892h |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3^{3} \cdot 11^{6} \cdot 13^{2} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2652$ |
$12$ |
$0$ |
$1$ |
$16$ |
$2$ |
$1$ |
$2419200$ |
$1.747643$ |
$6371214852688/77571$ |
$0.95945$ |
$3.89746$ |
$[0, -1, 0, -296732, -62115480]$ |
\(y^2=x^3-x^2-296732x-62115480\) |
2.3.0.a.1, 52.6.0.c.1, 204.6.0.?, 2652.12.0.? |
$[]$ |
320892.h2 |
320892h1 |
320892.h |
320892h |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{6} \cdot 11^{6} \cdot 13 \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2652$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$1209600$ |
$1.401068$ |
$26919436288/2738853$ |
$0.94113$ |
$3.24762$ |
$[0, -1, 0, -19037, -911502]$ |
\(y^2=x^3-x^2-19037x-911502\) |
2.3.0.a.1, 26.6.0.b.1, 204.6.0.?, 2652.12.0.? |
$[]$ |
320892.i1 |
320892i1 |
320892.i |
320892i |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{4} \cdot 11^{10} \cdot 13^{11} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$884$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$900472320$ |
$4.700485$ |
$-2239480268659352677250512/2467804862588949$ |
$1.01705$ |
$6.75080$ |
$[0, -1, 0, -51230679364, 4463189855904232]$ |
\(y^2=x^3-x^2-51230679364x+4463189855904232\) |
884.2.0.? |
$[]$ |
320892.j1 |
320892j1 |
320892.j |
320892j |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{4} \cdot 11^{4} \cdot 13^{11} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$884$ |
$2$ |
$0$ |
$1$ |
$121$ |
$11$ |
$0$ |
$81861120$ |
$3.501534$ |
$-2239480268659352677250512/2467804862588949$ |
$1.01705$ |
$5.61604$ |
$[0, -1, 0, -423394044, -3353106636504]$ |
\(y^2=x^3-x^2-423394044x-3353106636504\) |
884.2.0.? |
$[]$ |
320892.k1 |
320892k1 |
320892.k |
320892k |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{13} \cdot 11^{9} \cdot 13^{7} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$29172$ |
$2$ |
$0$ |
$18.42766795$ |
$1$ |
|
$0$ |
$347098752$ |
$4.113129$ |
$-2128413095130531110384/1700703865772847$ |
$1.02080$ |
$6.01294$ |
$[0, -1, 0, -2264829156, -41513849550072]$ |
\(y^2=x^3-x^2-2264829156x-41513849550072\) |
29172.2.0.? |
$[(735315631766/775, 630053196646401814/775)]$ |
320892.l1 |
320892l1 |
320892.l |
320892l |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{13} \cdot 11^{3} \cdot 13^{7} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$29172$ |
$2$ |
$0$ |
$31.39779855$ |
$1$ |
|
$0$ |
$31554432$ |
$2.914181$ |
$-2128413095130531110384/1700703865772847$ |
$1.02080$ |
$4.87819$ |
$[0, -1, 0, -18717596, 31196776008]$ |
\(y^2=x^3-x^2-18717596x+31196776008\) |
29172.2.0.? |
$[(333663439634221/373330, 524759527245695575031/373330)]$ |
320892.m1 |
320892m1 |
320892.m |
320892m |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{7} \cdot 11^{9} \cdot 13 \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$29172$ |
$2$ |
$0$ |
$27.22555929$ |
$1$ |
|
$0$ |
$6048000$ |
$2.090706$ |
$-6247321674064/643308237$ |
$0.84152$ |
$3.90883$ |
$[0, -1, 0, -294796, -66765752]$ |
\(y^2=x^3-x^2-294796x-66765752\) |
29172.2.0.? |
$[(29545128152061/215030, 22998253882062348241/215030)]$ |
320892.n1 |
320892n1 |
320892.n |
320892n |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{4} \cdot 11^{6} \cdot 13 \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$58344$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1344000$ |
$1.596272$ |
$13478411517952/304317$ |
$0.96321$ |
$3.73788$ |
$[0, 1, 0, -151169, -22672608]$ |
\(y^2=x^3+x^2-151169x-22672608\) |
2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 264.12.0.?, $\ldots$ |
$[]$ |
320892.n2 |
320892n2 |
320892.n |
320892n |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{2} \cdot 11^{6} \cdot 13^{2} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$58344$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$2688000$ |
$1.942846$ |
$-754612278352/127035441$ |
$0.89330$ |
$3.74934$ |
$[0, 1, 0, -145724, -24375804]$ |
\(y^2=x^3+x^2-145724x-24375804\) |
2.3.0.a.1, 4.6.0.a.1, 52.12.0.d.1, 264.12.0.?, 1768.24.0.?, $\ldots$ |
$[]$ |
320892.o1 |
320892o2 |
320892.o |
320892o |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3 \cdot 11^{6} \cdot 13^{6} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2652$ |
$12$ |
$0$ |
$3.279157593$ |
$1$ |
|
$3$ |
$2419200$ |
$1.961283$ |
$437640371152/246167259$ |
$1.02337$ |
$3.68623$ |
$[0, 1, 0, -121524, -2770044]$ |
\(y^2=x^3+x^2-121524x-2770044\) |
2.3.0.a.1, 52.6.0.c.1, 204.6.0.?, 2652.12.0.? |
$[(1880, 80106)]$ |
320892.o2 |
320892o1 |
320892.o |
320892o |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{2} \cdot 11^{6} \cdot 13^{3} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2652$ |
$12$ |
$0$ |
$1.639578796$ |
$1$ |
|
$5$ |
$1209600$ |
$1.614710$ |
$2908230909952/5714397$ |
$1.06001$ |
$3.61693$ |
$[0, 1, 0, -90669, -10520820]$ |
\(y^2=x^3+x^2-90669x-10520820\) |
2.3.0.a.1, 26.6.0.b.1, 204.6.0.?, 2652.12.0.? |
$[(-177, 117)]$ |
320892.p1 |
320892p1 |
320892.p |
320892p |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{11} \cdot 11^{8} \cdot 13 \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1326$ |
$2$ |
$0$ |
$0.974774432$ |
$1$ |
|
$2$ |
$3484800$ |
$1.970280$ |
$15092000000/39149487$ |
$0.88774$ |
$3.67864$ |
$[0, 1, 0, 77642, -15513643]$ |
\(y^2=x^3+x^2+77642x-15513643\) |
1326.2.0.? |
$[(161, 1089)]$ |
320892.q1 |
320892q1 |
320892.q |
320892q |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3 \cdot 11^{7} \cdot 13 \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$29172$ |
$2$ |
$0$ |
$3.173960030$ |
$1$ |
|
$0$ |
$702720$ |
$1.083311$ |
$686000/7293$ |
$0.68213$ |
$2.85719$ |
$[0, 1, 0, 1412, 85556]$ |
\(y^2=x^3+x^2+1412x+85556\) |
29172.2.0.? |
$[(325/2, 6897/2)]$ |
320892.r1 |
320892r1 |
320892.r |
320892r |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{3} \cdot 11^{3} \cdot 13^{3} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$29172$ |
$2$ |
$0$ |
$1.286881517$ |
$1$ |
|
$4$ |
$259200$ |
$0.897105$ |
$-159014000/1008423$ |
$0.80644$ |
$2.68990$ |
$[0, 1, 0, -788, -29724]$ |
\(y^2=x^3+x^2-788x-29724\) |
29172.2.0.? |
$[(40, 66)]$ |
320892.s1 |
320892s1 |
320892.s |
320892s |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{3} \cdot 11^{7} \cdot 13^{3} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$29172$ |
$16$ |
$0$ |
$50.22414205$ |
$1$ |
|
$0$ |
$31415040$ |
$3.266228$ |
$-28482130972727110546000/11092653$ |
$0.97155$ |
$5.65004$ |
$[0, 1, 0, -488819228, -4159944594060]$ |
\(y^2=x^3+x^2-488819228x-4159944594060\) |
3.4.0.a.1, 33.8.0-3.a.1.2, 2652.8.0.?, 29172.16.0.? |
$[(93865659299195767740429/1681532098, 19135633851681146188169433825497589/1681532098)]$ |
320892.s2 |
320892s2 |
320892.s |
320892s |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3 \cdot 11^{9} \cdot 13^{9} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$29172$ |
$16$ |
$0$ |
$16.74138068$ |
$1$ |
|
$0$ |
$94245120$ |
$3.815533$ |
$-28332644210392032898000/208034922340259157$ |
$0.97166$ |
$5.65062$ |
$[0, 1, 0, -487962548, -4175251095996]$ |
\(y^2=x^3+x^2-487962548x-4175251095996\) |
3.4.0.a.1, 33.8.0-3.a.1.1, 2652.8.0.?, 29172.16.0.? |
$[(13894011072/727, 414652412315262/727)]$ |
320892.t1 |
320892t2 |
320892.t |
320892t |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{5} \cdot 11^{9} \cdot 13 \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$29172$ |
$16$ |
$0$ |
$0.385399700$ |
$1$ |
|
$4$ |
$88646400$ |
$3.822128$ |
$-11355430171368393250000/498618024567704613$ |
$1.00125$ |
$5.58328$ |
$[0, 1, 0, -359770308, 2724257867076]$ |
\(y^2=x^3+x^2-359770308x+2724257867076\) |
3.4.0.a.1, 33.8.0-3.a.1.1, 2652.8.0.?, 29172.16.0.? |
$[(12360, 407286)]$ |
320892.t2 |
320892t1 |
320892.t |
320892t |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{15} \cdot 11^{7} \cdot 13^{3} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$29172$ |
$16$ |
$0$ |
$1.156199102$ |
$1$ |
|
$0$ |
$29548800$ |
$3.272823$ |
$2766056134796750000/1703681184259197$ |
$1.00179$ |
$4.92130$ |
$[0, 1, 0, 22468692, 10403777844]$ |
\(y^2=x^3+x^2+22468692x+10403777844\) |
3.4.0.a.1, 33.8.0-3.a.1.2, 2652.8.0.?, 29172.16.0.? |
$[(4197/2, 1499553/2)]$ |
320892.u1 |
320892u1 |
320892.u |
320892u |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{3} \cdot 11^{9} \cdot 13^{3} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$29172$ |
$2$ |
$0$ |
$2.525499985$ |
$1$ |
|
$0$ |
$2851200$ |
$2.096054$ |
$-159014000/1008423$ |
$0.80644$ |
$3.82465$ |
$[0, 1, 0, -95388, 39181140]$ |
\(y^2=x^3+x^2-95388x+39181140\) |
29172.2.0.? |
$[(-1171/2, 51909/2)]$ |
320892.v1 |
320892v2 |
320892.v |
320892v |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3 \cdot 11^{6} \cdot 13^{2} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$2764800$ |
$1.872761$ |
$42830942866000/146523$ |
$0.92201$ |
$4.04775$ |
$[0, 1, 0, -560028, -161496876]$ |
\(y^2=x^3+x^2-560028x-161496876\) |
2.3.0.a.1, 12.6.0.a.1, 52.6.0.c.1, 156.12.0.? |
$[]$ |
320892.v2 |
320892v1 |
320892.v |
320892v |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{2} \cdot 11^{6} \cdot 13 \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1382400$ |
$1.526188$ |
$174456832000/9771957$ |
$1.16543$ |
$3.39501$ |
$[0, 1, 0, -35493, -2457864]$ |
\(y^2=x^3+x^2-35493x-2457864\) |
2.3.0.a.1, 12.6.0.b.1, 26.6.0.b.1, 156.12.0.? |
$[]$ |
320892.w1 |
320892w2 |
320892.w |
320892w |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3 \cdot 11^{10} \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$5.900740102$ |
$1$ |
|
$1$ |
$4792320$ |
$2.221306$ |
$58949987938000/2145243243$ |
$0.85943$ |
$4.07294$ |
$[0, 1, 0, -622948, -183406588]$ |
\(y^2=x^3+x^2-622948x-183406588\) |
2.3.0.a.1, 12.6.0.a.1, 52.6.0.c.1, 156.12.0.? |
$[(-3848/3, 60146/3)]$ |
320892.w2 |
320892w1 |
320892.w |
320892w |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{2} \cdot 11^{8} \cdot 13 \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$2.950370051$ |
$1$ |
|
$3$ |
$2396160$ |
$1.874733$ |
$3718856704000/1182406797$ |
$0.90782$ |
$3.63632$ |
$[0, 1, 0, -98413, 7943780]$ |
\(y^2=x^3+x^2-98413x+7943780\) |
2.3.0.a.1, 12.6.0.b.1, 26.6.0.b.1, 156.12.0.? |
$[(-199, 4437)]$ |
320892.x1 |
320892x3 |
320892.x |
320892x |
$4$ |
$6$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{2} \cdot 11^{6} \cdot 13^{3} \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$29172$ |
$96$ |
$1$ |
$3.662285941$ |
$1$ |
|
$3$ |
$6220800$ |
$2.360825$ |
$840033089536000/477272151837$ |
$1.05946$ |
$4.06381$ |
$[0, 1, 0, -599353, 23908520]$ |
\(y^2=x^3+x^2-599353x+23908520\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 26.6.0.b.1, 33.8.0-3.a.1.1, $\ldots$ |
$[(-793, 1071)]$ |
320892.x2 |
320892x1 |
320892.x |
320892x |
$4$ |
$6$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{6} \cdot 11^{6} \cdot 13 \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$29172$ |
$96$ |
$1$ |
$10.98685782$ |
$1$ |
|
$1$ |
$2073600$ |
$1.811520$ |
$216727177216000/2738853$ |
$0.98186$ |
$3.95695$ |
$[0, 1, 0, -381553, -90841588]$ |
\(y^2=x^3+x^2-381553x-90841588\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 26.6.0.b.1, 33.8.0-3.a.1.2, $\ldots$ |
$[(2258153/56, 505761003/56)]$ |
320892.x3 |
320892x2 |
320892.x |
320892x |
$4$ |
$6$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{12} \cdot 11^{6} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$29172$ |
$96$ |
$1$ |
$5.493428912$ |
$1$ |
|
$1$ |
$4147200$ |
$2.158092$ |
$-12479332642000/1526829993$ |
$0.91595$ |
$3.96561$ |
$[0, 1, 0, -371268, -95959404]$ |
\(y^2=x^3+x^2-371268x-95959404\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 33.8.0-3.a.1.2, 52.6.0.c.1, $\ldots$ |
$[(25929/4, 3819123/4)]$ |
320892.x4 |
320892x4 |
320892.x |
320892x |
$4$ |
$6$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{4} \cdot 11^{6} \cdot 13^{6} \cdot 17^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$29172$ |
$96$ |
$1$ |
$1.831142970$ |
$1$ |
|
$3$ |
$12441600$ |
$2.707401$ |
$3258571509326000/1920843121977$ |
$1.13909$ |
$4.38940$ |
$[0, 1, 0, 2373012, 192738852]$ |
\(y^2=x^3+x^2+2373012x+192738852\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 33.8.0-3.a.1.1, 52.6.0.c.1, $\ldots$ |
$[(1536, 86394)]$ |
320892.y1 |
320892y1 |
320892.y |
320892y |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{11} \cdot 11^{2} \cdot 13 \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1326$ |
$2$ |
$0$ |
$0.524696485$ |
$1$ |
|
$4$ |
$316800$ |
$0.771331$ |
$15092000000/39149487$ |
$0.88774$ |
$2.54389$ |
$[0, 1, 0, 642, 11889]$ |
\(y^2=x^3+x^2+642x+11889\) |
1326.2.0.? |
$[(30, 243)]$ |
320892.z1 |
320892z1 |
320892.z |
320892z |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{18} \cdot 11^{8} \cdot 13^{5} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$884$ |
$2$ |
$0$ |
$0.804713889$ |
$1$ |
|
$4$ |
$1780289280$ |
$5.367332$ |
$-85772861682103118608759187536/59025788336118913418421$ |
$1.02990$ |
$7.20499$ |
$[0, 1, 0, -349142361300, 79452828254889252]$ |
\(y^2=x^3+x^2-349142361300x+79452828254889252\) |
884.2.0.? |
$[(340776, 6880302)]$ |
320892.ba1 |
320892ba1 |
320892.ba |
320892ba |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{8} \cdot 11^{8} \cdot 13 \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$884$ |
$2$ |
$0$ |
$3.666833424$ |
$1$ |
|
$2$ |
$2534400$ |
$1.982450$ |
$-14091086416/1449981$ |
$0.79742$ |
$3.80640$ |
$[0, 1, 0, -191220, -34992828]$ |
\(y^2=x^3+x^2-191220x-34992828\) |
884.2.0.? |
$[(516, 1998)]$ |
320892.bb1 |
320892bb1 |
320892.bb |
320892bb |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{8} \cdot 11^{2} \cdot 13 \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$884$ |
$2$ |
$0$ |
$1.281061952$ |
$1$ |
|
$2$ |
$230400$ |
$0.783504$ |
$-14091086416/1449981$ |
$0.79742$ |
$2.67165$ |
$[0, 1, 0, -1580, 25716]$ |
\(y^2=x^3+x^2-1580x+25716\) |
884.2.0.? |
$[(19, 54)]$ |
320892.bc1 |
320892bc1 |
320892.bc |
320892bc |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{18} \cdot 11^{2} \cdot 13^{5} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$884$ |
$2$ |
$0$ |
$9.858954147$ |
$1$ |
|
$0$ |
$161844480$ |
$4.168381$ |
$-85772861682103118608759187536/59025788336118913418421$ |
$1.02990$ |
$6.07023$ |
$[0, 1, 0, -2885474060, -59695135104684]$ |
\(y^2=x^3+x^2-2885474060x-59695135104684\) |
884.2.0.? |
$[(488245/2, 300047943/2)]$ |
320892.bd1 |
320892bd2 |
320892.bd |
320892bd |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{2} \cdot 11^{2} \cdot 13^{3} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$29172$ |
$16$ |
$0$ |
$0.952352157$ |
$1$ |
|
$2$ |
$559872$ |
$1.097120$ |
$-167175727312/97144749$ |
$0.83795$ |
$2.90866$ |
$[0, 1, 0, -3604, 116708]$ |
\(y^2=x^3+x^2-3604x+116708\) |
3.4.0.a.1, 33.8.0-3.a.1.1, 884.2.0.?, 2652.8.0.?, 29172.16.0.? |
$[(56, 306)]$ |
320892.bd2 |
320892bd1 |
320892.bd |
320892bd |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{6} \cdot 11^{2} \cdot 13 \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$29172$ |
$16$ |
$0$ |
$2.857056471$ |
$1$ |
|
$0$ |
$186624$ |
$0.547813$ |
$160630448/161109$ |
$0.75547$ |
$2.30585$ |
$[0, 1, 0, 356, -2092]$ |
\(y^2=x^3+x^2+356x-2092\) |
3.4.0.a.1, 33.8.0-3.a.1.2, 884.2.0.?, 2652.8.0.?, 29172.16.0.? |
$[(29/2, 243/2)]$ |
320892.be1 |
320892be2 |
320892.be |
320892be |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{2} \cdot 11^{8} \cdot 13^{3} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$2652$ |
$16$ |
$0$ |
$28.57603754$ |
$1$ |
|
$0$ |
$6158592$ |
$2.296066$ |
$-167175727312/97144749$ |
$0.83795$ |
$4.04341$ |
$[0, 1, 0, -436124, -157082796]$ |
\(y^2=x^3+x^2-436124x-157082796\) |
3.8.0-3.a.1.1, 884.2.0.?, 2652.16.0.? |
$[(4208619853261/24650, 8593192294970843259/24650)]$ |
320892.be2 |
320892be1 |
320892.be |
320892be |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{6} \cdot 11^{8} \cdot 13 \cdot 17 \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$2652$ |
$16$ |
$0$ |
$9.525345846$ |
$1$ |
|
$2$ |
$2052864$ |
$1.746761$ |
$160630448/161109$ |
$0.75547$ |
$3.44061$ |
$[0, 1, 0, 43036, 2956644]$ |
\(y^2=x^3+x^2+43036x+2956644\) |
3.8.0-3.a.1.2, 884.2.0.?, 2652.16.0.? |
$[(28960/17, 14141814/17)]$ |
320892.bf1 |
320892bf1 |
320892.bf |
320892bf |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{5} \cdot 11^{10} \cdot 13^{5} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1326$ |
$2$ |
$0$ |
$9.934956168$ |
$1$ |
|
$0$ |
$48470400$ |
$3.174202$ |
$-1195060552094464/443271489687$ |
$0.93422$ |
$4.88717$ |
$[0, 1, 0, -16490646, 33012612477]$ |
\(y^2=x^3+x^2-16490646x+33012612477\) |
1326.2.0.? |
$[(385713/11, 150863355/11)]$ |
320892.bg1 |
320892bg1 |
320892.bg |
320892bg |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{5} \cdot 11^{4} \cdot 13^{5} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1326$ |
$2$ |
$0$ |
$1.779848668$ |
$1$ |
|
$2$ |
$4406400$ |
$1.975254$ |
$-1195060552094464/443271489687$ |
$0.93422$ |
$3.75242$ |
$[0, 1, 0, -136286, -24852423]$ |
\(y^2=x^3+x^2-136286x-24852423\) |
1326.2.0.? |
$[(538, 7605)]$ |
320892.bh1 |
320892bh1 |
320892.bh |
320892bh |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{4} \cdot 11^{8} \cdot 13^{3} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$5.531954857$ |
$1$ |
|
$3$ |
$17141760$ |
$2.586342$ |
$4801049335176577024/6222978333$ |
$0.96851$ |
$4.74611$ |
$[0, 1, 0, -10715921, 13498235232]$ |
\(y^2=x^3+x^2-10715921x+13498235232\) |
2.3.0.a.1, 26.6.0.b.1, 68.6.0.b.1, 884.12.0.? |
$[(10963, 1101705)]$ |