Learn more

Refine search


Results (1-50 of 51 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
320892.a1 320892.a \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $1.524962259$ $[0, -1, 0, -122129, -11743422]$ \(y^2=x^3-x^2-122129x-11743422\) 2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 264.12.0.?, $\ldots$
320892.a2 320892.a \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $0.762481129$ $[0, -1, 0, 318916, -77547336]$ \(y^2=x^3-x^2+318916x-77547336\) 2.3.0.a.1, 4.6.0.a.1, 52.12.0.d.1, 264.12.0.?, 1768.24.0.?, $\ldots$
320892.b1 320892.b \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 3106, -29775]$ \(y^2=x^3-x^2+3106x-29775\) 1326.2.0.?
320892.c1 320892.c \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 26, 13]$ \(y^2=x^3-x^2+26x+13\) 1326.2.0.?
320892.d1 320892.d \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $2.137525961$ $[0, -1, 0, -31071509, 66974196225]$ \(y^2=x^3-x^2-31071509x+66974196225\) 374.2.0.?
320892.e1 320892.e \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -57273, 5060574]$ \(y^2=x^3-x^2-57273x+5060574\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.b.1, 884.12.0.?
320892.e2 320892.e \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 35292, 19759896]$ \(y^2=x^3-x^2+35292x+19759896\) 2.3.0.a.1, 52.6.0.c.1, 68.6.0.a.1, 884.12.0.?
320892.f1 320892.f \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -4033, 87958]$ \(y^2=x^3-x^2-4033x+87958\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.b.1, 884.12.0.?
320892.f2 320892.f \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 6252, 454104]$ \(y^2=x^3-x^2+6252x+454104\) 2.3.0.a.1, 52.6.0.c.1, 68.6.0.a.1, 884.12.0.?
320892.g1 320892.g \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $3.305508236$ $[0, -1, 0, -16617, 825090]$ \(y^2=x^3-x^2-16617x+825090\) 2.3.0.a.1, 68.6.0.b.1, 858.6.0.?, 29172.12.0.?
320892.g2 320892.g \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $1.652754118$ $[0, -1, 0, -6332, 1824792]$ \(y^2=x^3-x^2-6332x+1824792\) 2.3.0.a.1, 68.6.0.a.1, 1716.6.0.?, 29172.12.0.?
320892.h1 320892.h \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -296732, -62115480]$ \(y^2=x^3-x^2-296732x-62115480\) 2.3.0.a.1, 52.6.0.c.1, 204.6.0.?, 2652.12.0.?
320892.h2 320892.h \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -19037, -911502]$ \(y^2=x^3-x^2-19037x-911502\) 2.3.0.a.1, 26.6.0.b.1, 204.6.0.?, 2652.12.0.?
320892.i1 320892.i \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -51230679364, 4463189855904232]$ \(y^2=x^3-x^2-51230679364x+4463189855904232\) 884.2.0.?
320892.j1 320892.j \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -423394044, -3353106636504]$ \(y^2=x^3-x^2-423394044x-3353106636504\) 884.2.0.?
320892.k1 320892.k \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $18.42766795$ $[0, -1, 0, -2264829156, -41513849550072]$ \(y^2=x^3-x^2-2264829156x-41513849550072\) 29172.2.0.?
320892.l1 320892.l \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $31.39779855$ $[0, -1, 0, -18717596, 31196776008]$ \(y^2=x^3-x^2-18717596x+31196776008\) 29172.2.0.?
320892.m1 320892.m \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $27.22555929$ $[0, -1, 0, -294796, -66765752]$ \(y^2=x^3-x^2-294796x-66765752\) 29172.2.0.?
320892.n1 320892.n \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -151169, -22672608]$ \(y^2=x^3+x^2-151169x-22672608\) 2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 264.12.0.?, $\ldots$
320892.n2 320892.n \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -145724, -24375804]$ \(y^2=x^3+x^2-145724x-24375804\) 2.3.0.a.1, 4.6.0.a.1, 52.12.0.d.1, 264.12.0.?, 1768.24.0.?, $\ldots$
320892.o1 320892.o \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $3.279157593$ $[0, 1, 0, -121524, -2770044]$ \(y^2=x^3+x^2-121524x-2770044\) 2.3.0.a.1, 52.6.0.c.1, 204.6.0.?, 2652.12.0.?
320892.o2 320892.o \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $1.639578796$ $[0, 1, 0, -90669, -10520820]$ \(y^2=x^3+x^2-90669x-10520820\) 2.3.0.a.1, 26.6.0.b.1, 204.6.0.?, 2652.12.0.?
320892.p1 320892.p \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $0.974774432$ $[0, 1, 0, 77642, -15513643]$ \(y^2=x^3+x^2+77642x-15513643\) 1326.2.0.?
320892.q1 320892.q \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $3.173960030$ $[0, 1, 0, 1412, 85556]$ \(y^2=x^3+x^2+1412x+85556\) 29172.2.0.?
320892.r1 320892.r \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $1.286881517$ $[0, 1, 0, -788, -29724]$ \(y^2=x^3+x^2-788x-29724\) 29172.2.0.?
320892.s1 320892.s \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $50.22414205$ $[0, 1, 0, -488819228, -4159944594060]$ \(y^2=x^3+x^2-488819228x-4159944594060\) 3.4.0.a.1, 33.8.0-3.a.1.2, 2652.8.0.?, 29172.16.0.?
320892.s2 320892.s \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $16.74138068$ $[0, 1, 0, -487962548, -4175251095996]$ \(y^2=x^3+x^2-487962548x-4175251095996\) 3.4.0.a.1, 33.8.0-3.a.1.1, 2652.8.0.?, 29172.16.0.?
320892.t1 320892.t \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $0.385399700$ $[0, 1, 0, -359770308, 2724257867076]$ \(y^2=x^3+x^2-359770308x+2724257867076\) 3.4.0.a.1, 33.8.0-3.a.1.1, 2652.8.0.?, 29172.16.0.?
320892.t2 320892.t \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $1.156199102$ $[0, 1, 0, 22468692, 10403777844]$ \(y^2=x^3+x^2+22468692x+10403777844\) 3.4.0.a.1, 33.8.0-3.a.1.2, 2652.8.0.?, 29172.16.0.?
320892.u1 320892.u \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $2.525499985$ $[0, 1, 0, -95388, 39181140]$ \(y^2=x^3+x^2-95388x+39181140\) 29172.2.0.?
320892.v1 320892.v \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -560028, -161496876]$ \(y^2=x^3+x^2-560028x-161496876\) 2.3.0.a.1, 12.6.0.a.1, 52.6.0.c.1, 156.12.0.?
320892.v2 320892.v \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -35493, -2457864]$ \(y^2=x^3+x^2-35493x-2457864\) 2.3.0.a.1, 12.6.0.b.1, 26.6.0.b.1, 156.12.0.?
320892.w1 320892.w \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $5.900740102$ $[0, 1, 0, -622948, -183406588]$ \(y^2=x^3+x^2-622948x-183406588\) 2.3.0.a.1, 12.6.0.a.1, 52.6.0.c.1, 156.12.0.?
320892.w2 320892.w \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $2.950370051$ $[0, 1, 0, -98413, 7943780]$ \(y^2=x^3+x^2-98413x+7943780\) 2.3.0.a.1, 12.6.0.b.1, 26.6.0.b.1, 156.12.0.?
320892.x1 320892.x \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $3.662285941$ $[0, 1, 0, -599353, 23908520]$ \(y^2=x^3+x^2-599353x+23908520\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 26.6.0.b.1, 33.8.0-3.a.1.1, $\ldots$
320892.x2 320892.x \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $10.98685782$ $[0, 1, 0, -381553, -90841588]$ \(y^2=x^3+x^2-381553x-90841588\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 26.6.0.b.1, 33.8.0-3.a.1.2, $\ldots$
320892.x3 320892.x \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $5.493428912$ $[0, 1, 0, -371268, -95959404]$ \(y^2=x^3+x^2-371268x-95959404\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 33.8.0-3.a.1.2, 52.6.0.c.1, $\ldots$
320892.x4 320892.x \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $1.831142970$ $[0, 1, 0, 2373012, 192738852]$ \(y^2=x^3+x^2+2373012x+192738852\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 33.8.0-3.a.1.1, 52.6.0.c.1, $\ldots$
320892.y1 320892.y \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $0.524696485$ $[0, 1, 0, 642, 11889]$ \(y^2=x^3+x^2+642x+11889\) 1326.2.0.?
320892.z1 320892.z \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $0.804713889$ $[0, 1, 0, -349142361300, 79452828254889252]$ \(y^2=x^3+x^2-349142361300x+79452828254889252\) 884.2.0.?
320892.ba1 320892.ba \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $3.666833424$ $[0, 1, 0, -191220, -34992828]$ \(y^2=x^3+x^2-191220x-34992828\) 884.2.0.?
320892.bb1 320892.bb \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $1.281061952$ $[0, 1, 0, -1580, 25716]$ \(y^2=x^3+x^2-1580x+25716\) 884.2.0.?
320892.bc1 320892.bc \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $9.858954147$ $[0, 1, 0, -2885474060, -59695135104684]$ \(y^2=x^3+x^2-2885474060x-59695135104684\) 884.2.0.?
320892.bd1 320892.bd \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $0.952352157$ $[0, 1, 0, -3604, 116708]$ \(y^2=x^3+x^2-3604x+116708\) 3.4.0.a.1, 33.8.0-3.a.1.1, 884.2.0.?, 2652.8.0.?, 29172.16.0.?
320892.bd2 320892.bd \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $2.857056471$ $[0, 1, 0, 356, -2092]$ \(y^2=x^3+x^2+356x-2092\) 3.4.0.a.1, 33.8.0-3.a.1.2, 884.2.0.?, 2652.8.0.?, 29172.16.0.?
320892.be1 320892.be \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $28.57603754$ $[0, 1, 0, -436124, -157082796]$ \(y^2=x^3+x^2-436124x-157082796\) 3.8.0-3.a.1.1, 884.2.0.?, 2652.16.0.?
320892.be2 320892.be \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\Z/3\Z$ $9.525345846$ $[0, 1, 0, 43036, 2956644]$ \(y^2=x^3+x^2+43036x+2956644\) 3.8.0-3.a.1.2, 884.2.0.?, 2652.16.0.?
320892.bf1 320892.bf \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $9.934956168$ $[0, 1, 0, -16490646, 33012612477]$ \(y^2=x^3+x^2-16490646x+33012612477\) 1326.2.0.?
320892.bg1 320892.bg \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $1.779848668$ $[0, 1, 0, -136286, -24852423]$ \(y^2=x^3+x^2-136286x-24852423\) 1326.2.0.?
320892.bh1 320892.bh \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $5.531954857$ $[0, 1, 0, -10715921, 13498235232]$ \(y^2=x^3+x^2-10715921x+13498235232\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.b.1, 884.12.0.?
Next   displayed columns for results