Learn more

Refine search


Results (1-50 of 75 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
337896.a1 337896.a \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $1.886194014$ $[0, 0, 0, -2116182, 1113181405]$ \(y^2=x^3-2116182x+1113181405\) 2.3.0.a.1, 12.6.0.c.1, 26.6.0.b.1, 156.12.0.?
337896.a2 337896.a \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $0.943097007$ $[0, 0, 0, 1831353, 4788336490]$ \(y^2=x^3+1831353x+4788336490\) 2.3.0.a.1, 6.6.0.a.1, 52.6.0.c.1, 156.12.0.?
337896.b1 337896.b \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.604802654$ $[0, 0, 0, 310821, 20755334]$ \(y^2=x^3+310821x+20755334\) 2964.2.0.?
337896.c1 337896.c \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $4.331460583$ $[0, 0, 0, -88806, -10185615]$ \(y^2=x^3-88806x-10185615\) 2.3.0.a.1, 12.6.0.c.1, 988.6.0.?, 1482.6.0.?, 2964.12.0.?
337896.c2 337896.c \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $2.165730291$ $[0, 0, 0, -83391, -11481966]$ \(y^2=x^3-83391x-11481966\) 2.3.0.a.1, 6.6.0.a.1, 988.6.0.?, 2964.12.0.?
337896.d1 337896.d \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -28046451, -76397558546]$ \(y^2=x^3-28046451x-76397558546\) 5928.2.0.?
337896.e1 337896.e \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -77691, 11138294]$ \(y^2=x^3-77691x+11138294\) 5928.2.0.?
337896.f1 337896.f \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $2$ $\Z/2\Z$ $29.18476248$ $[0, 0, 0, -2704251, -1711663450]$ \(y^2=x^3-2704251x-1711663450\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 76.12.0.?, 104.12.0.?, $\ldots$
337896.f2 337896.f \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $7.296190620$ $[0, 0, 0, -170031, -26407150]$ \(y^2=x^3-170031x-26407150\) 2.6.0.a.1, 12.12.0.b.1, 52.12.0.b.1, 76.12.0.?, 156.24.0.?, $\ldots$
337896.f3 337896.f \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $2$ $\Z/2\Z$ $7.296190620$ $[0, 0, 0, -23826, 816221]$ \(y^2=x^3-23826x+816221\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 26.6.0.b.1, 52.12.0.g.1, $\ldots$
337896.f4 337896.f \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $2$ $\Z/2\Z$ $7.296190620$ $[0, 0, 0, 24909, -83446594]$ \(y^2=x^3+24909x-83446594\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 76.12.0.?, $\ldots$
337896.g1 337896.g \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $3.522438896$ $[0, 0, 0, -1397811, 636094046]$ \(y^2=x^3-1397811x+636094046\) 52.2.0.a.1
337896.h1 337896.h \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -504609771, -4362969061514]$ \(y^2=x^3-504609771x-4362969061514\) 52.2.0.a.1
337896.i1 337896.i \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $16.26932059$ $[0, 0, 0, -81070131, -94457799394]$ \(y^2=x^3-81070131x-94457799394\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 104.12.0.?, 152.12.0.?, $\ldots$
337896.i2 337896.i \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $32.53864119$ $[0, 0, 0, -65020071, -201617629990]$ \(y^2=x^3-65020071x-201617629990\) 2.6.0.a.1, 12.12.0.b.1, 52.12.0-2.a.1.2, 76.12.0.?, 156.24.0.?, $\ldots$
337896.i3 337896.i \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $65.07728239$ $[0, 0, 0, -65003826, -201723498655]$ \(y^2=x^3-65003826x-201723498655\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 76.12.0.?, 104.12.0.?, $\ldots$
337896.i4 337896.i \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $16.26932059$ $[0, 0, 0, -49229931, -302001866026]$ \(y^2=x^3-49229931x-302001866026\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 76.12.0.?, $\ldots$
337896.j1 337896.j \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -18411, -644746]$ \(y^2=x^3-18411x-644746\) 2.3.0.a.1, 12.6.0.a.1, 52.6.0.e.1, 156.12.0.?
337896.j2 337896.j \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 3249, -68590]$ \(y^2=x^3+3249x-68590\) 2.3.0.a.1, 12.6.0.b.1, 52.6.0.e.1, 78.6.0.?, 156.12.0.?
337896.k1 337896.k \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 3249, 555579]$ \(y^2=x^3+3249x+555579\) 494.2.0.?
337896.l1 337896.l \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 111549, 6762974]$ \(y^2=x^3+111549x+6762974\) 5928.2.0.?
337896.m1 337896.m \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $2.556866160$ $[0, 0, 0, -862068, -440649596]$ \(y^2=x^3-862068x-440649596\) 38.2.0.a.1
337896.n1 337896.n \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $11.79659493$ $[0, 0, 0, -2037123, -1203384114]$ \(y^2=x^3-2037123x-1203384114\) 2964.2.0.?
337896.o1 337896.o \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.026451232$ $[0, 0, 0, -5643, 175446]$ \(y^2=x^3-5643x+175446\) 2964.2.0.?
337896.p1 337896.p \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $9.330927735$ $[0, 0, 0, -8578443, -9858948266]$ \(y^2=x^3-8578443x-9858948266\) 2964.2.0.?
337896.q1 337896.q \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -1038407475, -29013095398354]$ \(y^2=x^3-1038407475x-29013095398354\) 5928.2.0.?
337896.r1 337896.r \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -10830, -198911]$ \(y^2=x^3-10830x-198911\) 2.3.0.a.1, 12.6.0.c.1, 26.6.0.b.1, 156.12.0.?
337896.r2 337896.r \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 37905, -1495262]$ \(y^2=x^3+37905x-1495262\) 2.3.0.a.1, 6.6.0.a.1, 52.6.0.c.1, 156.12.0.?
337896.s1 337896.s \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $2.591517008$ $[0, 0, 0, 7125, 1107187]$ \(y^2=x^3+7125x+1107187\) 494.2.0.?
337896.t1 337896.t \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $16.95617102$ $[0, 0, 0, 2572125, -7594195633]$ \(y^2=x^3+2572125x-7594195633\) 494.2.0.?
337896.u1 337896.u \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -2366355, 1332141262]$ \(y^2=x^3-2366355x+1332141262\) 2.3.0.a.1, 104.6.0.?, 152.6.0.?, 988.6.0.?, 1976.12.0.?
337896.u2 337896.u \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 102885, 84187366]$ \(y^2=x^3+102885x+84187366\) 2.3.0.a.1, 104.6.0.?, 152.6.0.?, 494.6.0.?, 1976.12.0.?
337896.v1 337896.v \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -6555, -194218]$ \(y^2=x^3-6555x-194218\) 2.3.0.a.1, 104.6.0.?, 152.6.0.?, 988.6.0.?, 1976.12.0.?
337896.v2 337896.v \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 285, -12274]$ \(y^2=x^3+285x-12274\) 2.3.0.a.1, 104.6.0.?, 152.6.0.?, 494.6.0.?, 1976.12.0.?
337896.w1 337896.w \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $2.639346253$ $[0, 0, 0, -27075, -1803917]$ \(y^2=x^3-27075x-1803917\) 494.2.0.?
337896.x1 337896.x \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $7.813181295$ $[0, 0, 0, 102885, 98783318]$ \(y^2=x^3+102885x+98783318\) 8.2.0.a.1
337896.y1 337896.y \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 285, -14402]$ \(y^2=x^3+285x-14402\) 8.2.0.a.1
337896.z1 337896.z \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $2$ $\Z/2\Z$ $16.09578234$ $[0, 0, 0, -222015, -40234894]$ \(y^2=x^3-222015x-40234894\) 2.3.0.a.1, 12.6.0.c.1, 26.6.0.b.1, 156.12.0.?
337896.z2 337896.z \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $2$ $\Z/2\Z$ $4.023945586$ $[0, 0, 0, -10830, -912247]$ \(y^2=x^3-10830x-912247\) 2.3.0.a.1, 6.6.0.a.1, 52.6.0.c.1, 156.12.0.?
337896.ba1 337896.ba \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $4.163140370$ $[0, 0, 0, 102885, -253604666]$ \(y^2=x^3+102885x-253604666\) 52.2.0.a.1
337896.bb1 337896.bb \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $1.685685563$ $[0, 0, 0, 285, 36974]$ \(y^2=x^3+285x+36974\) 52.2.0.a.1
337896.bc1 337896.bc \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $4.178092477$ $[0, 0, 0, -162152175, 797916091763]$ \(y^2=x^3-162152175x+797916091763\) 494.2.0.?
337896.bd1 337896.bd \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $1.238455468$ $[0, 0, 0, -855, 9747]$ \(y^2=x^3-855x+9747\) 494.2.0.?
337896.be1 337896.be \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -308655, -66854673]$ \(y^2=x^3-308655x-66854673\) 494.2.0.?
337896.bf1 337896.bf \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -81317055, 282241306514]$ \(y^2=x^3-81317055x+282241306514\) 2.3.0.a.1, 12.6.0.c.1, 26.6.0.b.1, 156.12.0.?
337896.bf2 337896.bf \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -5079270, 4415570417]$ \(y^2=x^3-5079270x+4415570417\) 2.3.0.a.1, 6.6.0.a.1, 52.6.0.c.1, 156.12.0.?
337896.bg1 337896.bg \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1813472670, 29710477727881]$ \(y^2=x^3-1813472670x+29710477727881\) 2.3.0.a.1, 12.6.0.c.1, 26.6.0.b.1, 156.12.0.?
337896.bg2 337896.bg \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1493722335, 40520788903762]$ \(y^2=x^3-1493722335x+40520788903762\) 2.3.0.a.1, 6.6.0.a.1, 52.6.0.c.1, 156.12.0.?
337896.bh1 337896.bh \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $28.12430502$ $[0, 0, 0, -4819350, -4028763971]$ \(y^2=x^3-4819350x-4028763971\) 2.3.0.a.1, 12.6.0.c.1, 26.6.0.b.1, 156.12.0.?
337896.bh2 337896.bh \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $14.06215251$ $[0, 0, 0, -871815, -10434034262]$ \(y^2=x^3-871815x-10434034262\) 2.3.0.a.1, 6.6.0.a.1, 52.6.0.c.1, 156.12.0.?
Next   displayed columns for results