Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
35594.a1 |
35594c2 |
35594.a |
35594c |
$2$ |
$7$ |
\( 2 \cdot 13 \cdot 37^{2} \) |
\( - 2 \cdot 13^{7} \cdot 37^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$26936$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$723240$ |
$2.095253$ |
$-1064019559329/125497034$ |
$1.06269$ |
$4.72752$ |
$[1, -1, 0, -291169, -66277889]$ |
\(y^2+xy=x^3-x^2-291169x-66277889\) |
7.24.0.a.2, 104.2.0.?, 259.48.0.?, 728.48.2.?, 26936.96.2.? |
$[]$ |
35594.a2 |
35594c1 |
35594.a |
35594c |
$2$ |
$7$ |
\( 2 \cdot 13 \cdot 37^{2} \) |
\( - 2^{7} \cdot 13 \cdot 37^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.1 |
7B.6.1 |
$26936$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$103320$ |
$1.122299$ |
$-2146689/1664$ |
$0.96784$ |
$3.53961$ |
$[1, -1, 0, -3679, 132301]$ |
\(y^2+xy=x^3-x^2-3679x+132301\) |
7.24.0.a.1, 104.2.0.?, 259.48.0.?, 728.48.2.?, 26936.96.2.? |
$[]$ |
35594.b1 |
35594b1 |
35594.b |
35594b |
$1$ |
$1$ |
\( 2 \cdot 13 \cdot 37^{2} \) |
\( - 2^{10} \cdot 13^{4} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$148$ |
$16$ |
$0$ |
$1.274657856$ |
$1$ |
|
$4$ |
$23040$ |
$0.717997$ |
$-4652805537/29246464$ |
$0.96757$ |
$3.04925$ |
$[1, -1, 0, -386, -9964]$ |
\(y^2+xy=x^3-x^2-386x-9964\) |
4.8.0.b.1, 148.16.0.? |
$[(31, 69)]$ |
35594.c1 |
35594a1 |
35594.c |
35594a |
$2$ |
$2$ |
\( 2 \cdot 13 \cdot 37^{2} \) |
\( 2^{4} \cdot 13 \cdot 37^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$3848$ |
$48$ |
$0$ |
$5.745957734$ |
$1$ |
|
$1$ |
$87552$ |
$1.285688$ |
$72511713/7696$ |
$0.84804$ |
$3.79437$ |
$[1, -1, 0, -11893, -448155]$ |
\(y^2+xy=x^3-x^2-11893x-448155\) |
2.3.0.a.1, 4.6.0.b.1, 104.12.0.?, 296.12.0.?, 962.6.0.?, $\ldots$ |
$[(-265/2, 1975/2)]$ |
35594.c2 |
35594a2 |
35594.c |
35594a |
$2$ |
$2$ |
\( 2 \cdot 13 \cdot 37^{2} \) |
\( - 2^{2} \cdot 13^{2} \cdot 37^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$3848$ |
$48$ |
$0$ |
$2.872978867$ |
$1$ |
|
$2$ |
$175104$ |
$1.632261$ |
$160103007/925444$ |
$0.87670$ |
$4.07949$ |
$[1, -1, 0, 15487, -2227855]$ |
\(y^2+xy=x^3-x^2+15487x-2227855\) |
2.3.0.a.1, 4.6.0.a.1, 52.12.0-4.a.1.2, 148.12.0.?, 1924.24.0.?, $\ldots$ |
$[(842, 24221)]$ |
35594.d1 |
35594e1 |
35594.d |
35594e |
$1$ |
$1$ |
\( 2 \cdot 13 \cdot 37^{2} \) |
\( - 2^{10} \cdot 13^{4} \cdot 37^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.16.0.2 |
|
$4$ |
$16$ |
$0$ |
$1.115237657$ |
$1$ |
|
$4$ |
$852480$ |
$2.523457$ |
$-4652805537/29246464$ |
$0.96757$ |
$5.11658$ |
$[1, -1, 1, -528691, -509463917]$ |
\(y^2+xy+y=x^3-x^2-528691x-509463917\) |
4.16.0-4.b.1.1 |
$[(1027, 4962)]$ |
35594.e1 |
35594d3 |
35594.e |
35594d |
$3$ |
$9$ |
\( 2 \cdot 13 \cdot 37^{2} \) |
\( - 2^{9} \cdot 13 \cdot 37^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$34632$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$301320$ |
$1.859846$ |
$-10730978619193/6656$ |
$1.02193$ |
$4.93034$ |
$[1, 0, 0, -629084, -192101104]$ |
\(y^2+xy=x^3-629084x-192101104\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 111.8.0.?, 117.36.0.?, $\ldots$ |
$[]$ |
35594.e2 |
35594d2 |
35594.e |
35594d |
$3$ |
$9$ |
\( 2 \cdot 13 \cdot 37^{2} \) |
\( - 2^{3} \cdot 13^{3} \cdot 37^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$34632$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$100440$ |
$1.310539$ |
$-10218313/17576$ |
$0.94717$ |
$3.73901$ |
$[1, 0, 0, -6189, -374023]$ |
\(y^2+xy=x^3-6189x-374023\) |
3.12.0.a.1, 104.2.0.?, 111.24.0.?, 117.36.0.?, 312.24.1.?, $\ldots$ |
$[]$ |
35594.e3 |
35594d1 |
35594.e |
35594d |
$3$ |
$9$ |
\( 2 \cdot 13 \cdot 37^{2} \) |
\( - 2 \cdot 13 \cdot 37^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$34632$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$33480$ |
$0.761233$ |
$12167/26$ |
$0.84415$ |
$3.05942$ |
$[1, 0, 0, 656, 10666]$ |
\(y^2+xy=x^3+656x+10666\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 111.8.0.?, 117.36.0.?, $\ldots$ |
$[]$ |