Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
360.a1 |
360e3 |
360.a |
360e |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{10} \cdot 3^{6} \cdot 5 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.15 |
2B |
$240$ |
$192$ |
$3$ |
$0.683761292$ |
$1$ |
|
$7$ |
$128$ |
$0.347092$ |
$132304644/5$ |
$1.13632$ |
$5.47455$ |
$[0, 0, 0, -963, 11502]$ |
\(y^2=x^3-963x+11502\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.o.1, 10.6.0.a.1, 12.12.0-4.c.1.1, $\ldots$ |
$[(19, 8)]$ |
360.a2 |
360e2 |
360.a |
360e |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.35 |
2Cs |
$120$ |
$192$ |
$3$ |
$0.341880646$ |
$1$ |
|
$19$ |
$64$ |
$0.000519$ |
$148176/25$ |
$1.09175$ |
$4.08471$ |
$[0, 0, 0, -63, 162]$ |
\(y^2=x^3-63x+162\) |
2.6.0.a.1, 4.12.0.a.1, 8.24.0.g.1, 12.24.0-4.a.1.1, 20.24.0.b.1, $\ldots$ |
$[(9, 18)]$ |
360.a3 |
360e1 |
360.a |
360e |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{4} \cdot 3^{6} \cdot 5 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.15 |
2B |
$240$ |
$192$ |
$3$ |
$0.683761292$ |
$1$ |
|
$7$ |
$32$ |
$-0.346055$ |
$55296/5$ |
$1.01898$ |
$3.44620$ |
$[0, 0, 0, -18, -27]$ |
\(y^2=x^3-18x-27\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.o.1, 10.6.0.a.1, 12.12.0-4.c.1.2, $\ldots$ |
$[(6, 9)]$ |
360.a4 |
360e4 |
360.a |
360e |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( - 2^{10} \cdot 3^{6} \cdot 5^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.24.0.2 |
2B |
$240$ |
$192$ |
$3$ |
$0.683761292$ |
$1$ |
|
$7$ |
$128$ |
$0.347092$ |
$237276/625$ |
$1.04671$ |
$4.61554$ |
$[0, 0, 0, 117, 918]$ |
\(y^2=x^3+117x+918\) |
2.3.0.a.1, 4.24.0.c.1, 12.48.0-4.c.1.1, 40.48.1.dk.1, 80.96.3.?, $\ldots$ |
$[(3, 36)]$ |
360.b1 |
360a5 |
360.b |
360a |
$6$ |
$8$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{11} \cdot 3^{7} \cdot 5^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.202 |
2B |
$240$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$512$ |
$1.029305$ |
$1770025017602/75$ |
$1.12837$ |
$7.20652$ |
$[0, 0, 0, -28803, 1881502]$ |
\(y^2=x^3-28803x+1881502\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.4, 12.12.0-4.c.1.1, 16.48.0-16.f.1.6, $\ldots$ |
$[]$ |
360.b2 |
360a3 |
360.b |
360a |
$6$ |
$8$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{4} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.105 |
2Cs |
$120$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$3$ |
$256$ |
$0.682732$ |
$868327204/5625$ |
$1.10029$ |
$5.79419$ |
$[0, 0, 0, -1803, 29302]$ |
\(y^2=x^3-1803x+29302\) |
2.6.0.a.1, 4.12.0.b.1, 8.48.0-8.d.1.16, 12.24.0-4.b.1.1, 24.96.0-24.k.1.4, $\ldots$ |
$[]$ |
360.b3 |
360a6 |
360.b |
360a |
$6$ |
$8$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( - 2^{11} \cdot 3^{7} \cdot 5^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.231 |
2B |
$240$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$512$ |
$1.029305$ |
$-27995042/1171875$ |
$1.07729$ |
$6.05814$ |
$[0, 0, 0, -723, 64078]$ |
\(y^2=x^3-723x+64078\) |
2.3.0.a.1, 4.6.0.c.1, 8.48.0-8.ba.1.3, 12.12.0-4.c.1.1, 24.96.0-24.bo.1.6, $\ldots$ |
$[]$ |
360.b4 |
360a2 |
360.b |
360a |
$6$ |
$8$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{8} \cdot 3^{10} \cdot 5^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.119 |
2Cs |
$120$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$3$ |
$128$ |
$0.336158$ |
$3631696/2025$ |
$1.02576$ |
$4.62820$ |
$[0, 0, 0, -183, -182]$ |
\(y^2=x^3-183x-182\) |
2.6.0.a.1, 4.12.0.b.1, 8.48.0-8.d.2.8, 12.24.0-4.b.1.3, 20.24.0.c.1, $\ldots$ |
$[]$ |
360.b5 |
360a1 |
360.b |
360a |
$6$ |
$8$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{4} \cdot 3^{8} \cdot 5 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.163 |
2B |
$240$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$64$ |
$-0.010416$ |
$24918016/45$ |
$0.99237$ |
$4.48435$ |
$[0, 0, 0, -138, -623]$ |
\(y^2=x^3-138x-623\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.5, 10.6.0.a.1, 12.12.0-4.c.1.2, $\ldots$ |
$[]$ |
360.b6 |
360a4 |
360.b |
360a |
$6$ |
$8$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( - 2^{10} \cdot 3^{14} \cdot 5 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.140 |
2B |
$240$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$256$ |
$0.682732$ |
$54607676/32805$ |
$1.06524$ |
$5.32421$ |
$[0, 0, 0, 717, -1442]$ |
\(y^2=x^3+717x-1442\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.ba.2, 12.12.0-4.c.1.2, 16.48.0-8.ba.2.3, $\ldots$ |
$[]$ |
360.c1 |
360b2 |
360.c |
360b |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{11} \cdot 3^{3} \cdot 5^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$120$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$64$ |
$0.012990$ |
$3721734/25$ |
$1.06284$ |
$4.42570$ |
$[0, 0, 0, -123, -522]$ |
\(y^2=x^3-123x-522\) |
2.3.0.a.1, 24.6.0.a.1, 40.6.0.e.1, 60.6.0.c.1, 120.12.0.? |
$[]$ |
360.c2 |
360b1 |
360.c |
360b |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( - 2^{10} \cdot 3^{3} \cdot 5 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$120$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$32$ |
$-0.333584$ |
$-108/5$ |
$1.29203$ |
$3.27957$ |
$[0, 0, 0, -3, -18]$ |
\(y^2=x^3-3x-18\) |
2.3.0.a.1, 24.6.0.d.1, 30.6.0.a.1, 40.6.0.e.1, 120.12.0.? |
$[]$ |
360.d1 |
360c2 |
360.d |
360c |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{11} \cdot 3^{9} \cdot 5^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$120$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$192$ |
$0.562296$ |
$3721734/25$ |
$1.06284$ |
$5.54557$ |
$[0, 0, 0, -1107, 14094]$ |
\(y^2=x^3-1107x+14094\) |
2.3.0.a.1, 24.6.0.a.1, 40.6.0.e.1, 60.6.0.c.1, 120.12.0.? |
$[]$ |
360.d2 |
360c1 |
360.d |
360c |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( - 2^{10} \cdot 3^{9} \cdot 5 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$120$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$96$ |
$0.215723$ |
$-108/5$ |
$1.29203$ |
$4.39944$ |
$[0, 0, 0, -27, 486]$ |
\(y^2=x^3-27x+486\) |
2.3.0.a.1, 24.6.0.d.1, 30.6.0.a.1, 40.6.0.e.1, 120.12.0.? |
$[]$ |
360.e1 |
360d4 |
360.e |
360d |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{11} \cdot 3^{10} \cdot 5 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$120$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$256$ |
$0.618710$ |
$546718898/405$ |
$0.99169$ |
$5.83336$ |
$[0, 0, 0, -1947, 33046]$ |
\(y^2=x^3-1947x+33046\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 24.24.0-24.y.1.6, 40.24.0-40.v.1.7, $\ldots$ |
$[]$ |
360.e2 |
360d3 |
360.e |
360d |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{11} \cdot 3^{7} \cdot 5^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$120$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$256$ |
$0.618710$ |
$136835858/1875$ |
$0.97925$ |
$5.59803$ |
$[0, 0, 0, -1227, -16346]$ |
\(y^2=x^3-1227x-16346\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 24.24.0-24.s.1.1, 40.24.0-40.bb.1.7, 120.48.0.? |
$[]$ |
360.e3 |
360d2 |
360.e |
360d |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$120$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$128$ |
$0.272136$ |
$470596/225$ |
$1.13245$ |
$4.51655$ |
$[0, 0, 0, -147, 286]$ |
\(y^2=x^3-147x+286\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 24.24.0-24.b.1.4, 40.24.0-40.a.1.6, 60.24.0-60.b.1.1, $\ldots$ |
$[]$ |
360.e4 |
360d1 |
360.e |
360d |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( - 2^{8} \cdot 3^{7} \cdot 5 \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$120$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$64$ |
$-0.074438$ |
$21296/15$ |
$0.85611$ |
$3.75514$ |
$[0, 0, 0, 33, 34]$ |
\(y^2=x^3+33x+34\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 24.24.0-24.y.1.4, 30.6.0.a.1, 40.24.0-40.bb.1.15, $\ldots$ |
$[]$ |