Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
4080.a1 |
4080u2 |
4080.a |
4080u |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{4} \cdot 3 \cdot 5^{3} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1020$ |
$16$ |
$0$ |
$1.087279028$ |
$1$ |
|
$2$ |
$4320$ |
$0.627203$ |
$-2608300961238784/6375$ |
$0.98278$ |
$4.60317$ |
$[0, -1, 0, -7226, 238851]$ |
\(y^2=x^3-x^2-7226x+238851\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 510.8.0.?, 1020.16.0.? |
$[(49, 5)]$ |
4080.a2 |
4080u1 |
4080.a |
4080u |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5 \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1020$ |
$16$ |
$0$ |
$0.362426342$ |
$1$ |
|
$4$ |
$1440$ |
$0.077897$ |
$-4447738624/663255$ |
$0.87350$ |
$3.03319$ |
$[0, -1, 0, -86, 375]$ |
\(y^2=x^3-x^2-86x+375\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 510.8.0.?, 1020.16.0.? |
$[(1, 17)]$ |
4080.b1 |
4080b1 |
4080.b |
4080b |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.611139956$ |
$1$ |
|
$2$ |
$320$ |
$-0.481512$ |
$-30118144/255$ |
$0.88843$ |
$2.40656$ |
$[0, -1, 0, -16, 31]$ |
\(y^2=x^3-x^2-16x+31\) |
510.2.0.? |
$[(3, 1)]$ |
4080.c1 |
4080t4 |
4080.c |
4080t |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( 2^{13} \cdot 3^{4} \cdot 5^{4} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.8 |
2B |
$2040$ |
$48$ |
$0$ |
$0.533628269$ |
$1$ |
|
$9$ |
$3072$ |
$0.768521$ |
$711882749089/1721250$ |
$1.00970$ |
$4.28309$ |
$[0, -1, 0, -2976, 63360]$ |
\(y^2=x^3-x^2-2976x+63360\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 68.12.0-4.c.1.2, 120.24.0.?, $\ldots$ |
$[(8, 200)]$ |
4080.c2 |
4080t3 |
4080.c |
4080t |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( 2^{13} \cdot 3 \cdot 5 \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.7 |
2B |
$2040$ |
$48$ |
$0$ |
$2.134513079$ |
$1$ |
|
$5$ |
$3072$ |
$0.768521$ |
$506071034209/2505630$ |
$0.93940$ |
$4.24204$ |
$[0, -1, 0, -2656, -51584]$ |
\(y^2=x^3-x^2-2656x-51584\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 60.12.0-4.c.1.2, 120.24.0.?, $\ldots$ |
$[(-30, 14)]$ |
4080.c3 |
4080t2 |
4080.c |
4080t |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( 2^{14} \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.1 |
2Cs |
$2040$ |
$48$ |
$0$ |
$1.067256539$ |
$1$ |
|
$13$ |
$1536$ |
$0.421948$ |
$454756609/260100$ |
$1.06745$ |
$3.39831$ |
$[0, -1, 0, -256, 256]$ |
\(y^2=x^3-x^2-256x+256\) |
2.6.0.a.1, 8.12.0-2.a.1.1, 60.12.0-2.a.1.1, 68.12.0-2.a.1.1, 120.24.0.?, $\ldots$ |
$[(0, 16)]$ |
4080.c4 |
4080t1 |
4080.c |
4080t |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{16} \cdot 3 \cdot 5 \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.12 |
2B |
$2040$ |
$48$ |
$0$ |
$2.134513079$ |
$1$ |
|
$5$ |
$768$ |
$0.075374$ |
$6967871/4080$ |
$0.91966$ |
$2.89572$ |
$[0, -1, 0, 64, 0]$ |
\(y^2=x^3-x^2+64x\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 60.12.0-4.c.1.1, 68.12.0-4.c.1.1, $\ldots$ |
$[(1, 8)]$ |
4080.d1 |
4080s1 |
4080.d |
4080s |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( 2^{4} \cdot 3^{16} \cdot 5^{7} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.22 |
2B |
$680$ |
$48$ |
$0$ |
$32.06112047$ |
$1$ |
|
$1$ |
$26880$ |
$1.906794$ |
$590887175978458660864/57171426328125$ |
$1.07093$ |
$6.08632$ |
$[0, -1, 0, -440521, -112381580]$ |
\(y^2=x^3-x^2-440521x-112381580\) |
2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.2, 170.6.0.?, 340.24.0.?, $\ldots$ |
$[(-395459816398764/1017557, 96607212772861349476/1017557)]$ |
4080.d2 |
4080s2 |
4080.d |
4080s |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{8} \cdot 3^{8} \cdot 5^{14} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.37 |
2B |
$680$ |
$48$ |
$0$ |
$16.03056023$ |
$1$ |
|
$1$ |
$53760$ |
$2.253368$ |
$-29279123829148431184/11573052978515625$ |
$1.02490$ |
$6.12101$ |
$[0, -1, 0, -407716, -129860084]$ |
\(y^2=x^3-x^2-407716x-129860084\) |
2.3.0.a.1, 4.6.0.a.1, 8.12.0-4.a.1.1, 340.12.0.?, 680.48.0.? |
$[(329334493/166, 5967608537151/166)]$ |
4080.e1 |
4080a4 |
4080.e |
4080a |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( 2^{10} \cdot 3^{4} \cdot 5 \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2040$ |
$48$ |
$0$ |
$0.694404136$ |
$1$ |
|
$7$ |
$1536$ |
$0.469952$ |
$647158135396/6885$ |
$0.93033$ |
$4.10488$ |
$[0, -1, 0, -1816, 30400]$ |
\(y^2=x^3-x^2-1816x+30400\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 24.12.0-4.c.1.3, 68.12.0-4.c.1.2, $\ldots$ |
$[(24, 8)]$ |
4080.e2 |
4080a3 |
4080.e |
4080a |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( 2^{10} \cdot 3 \cdot 5 \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2040$ |
$48$ |
$0$ |
$2.777616547$ |
$1$ |
|
$3$ |
$1536$ |
$0.469952$ |
$7793764996/1252815$ |
$0.89511$ |
$3.57332$ |
$[0, -1, 0, -416, -2640]$ |
\(y^2=x^3-x^2-416x-2640\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 20.12.0-4.c.1.1, 60.24.0-60.h.1.2, $\ldots$ |
$[(-11, 22)]$ |
4080.e3 |
4080a2 |
4080.e |
4080a |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$1020$ |
$48$ |
$0$ |
$1.388808273$ |
$1$ |
|
$9$ |
$768$ |
$0.123378$ |
$680136784/65025$ |
$0.84522$ |
$3.11324$ |
$[0, -1, 0, -116, 480]$ |
\(y^2=x^3-x^2-116x+480\) |
2.6.0.a.1, 12.12.0-2.a.1.1, 20.12.0-2.a.1.1, 60.24.0-60.a.1.4, 68.12.0-2.a.1.1, $\ldots$ |
$[(4, 8)]$ |
4080.e4 |
4080a1 |
4080.e |
4080a |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{4} \cdot 3 \cdot 5^{4} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2040$ |
$48$ |
$0$ |
$2.777616547$ |
$1$ |
|
$3$ |
$384$ |
$-0.223195$ |
$4499456/31875$ |
$0.87658$ |
$2.46717$ |
$[0, -1, 0, 9, 30]$ |
\(y^2=x^3-x^2+9x+30\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0-4.c.1.5, 68.12.0-4.c.1.1, $\ldots$ |
$[(14, 52)]$ |
4080.f1 |
4080r1 |
4080.f |
4080r |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5 \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1020$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$288$ |
$-0.431118$ |
$-1755904/2295$ |
$0.76623$ |
$2.20504$ |
$[0, -1, 0, -6, -9]$ |
\(y^2=x^3-x^2-6x-9\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 510.8.0.?, 1020.16.0.? |
$[]$ |
4080.f2 |
4080r2 |
4080.f |
4080r |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{4} \cdot 3 \cdot 5^{3} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1020$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$864$ |
$0.118189$ |
$1068359936/1842375$ |
$0.88734$ |
$2.91622$ |
$[0, -1, 0, 54, 195]$ |
\(y^2=x^3-x^2+54x+195\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 510.8.0.?, 1020.16.0.? |
$[]$ |
4080.g1 |
4080e1 |
4080.g |
4080e |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{4} \cdot 3^{7} \cdot 5^{3} \cdot 17^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6720$ |
$1.136663$ |
$64347918907136/388153407375$ |
$1.00188$ |
$4.42768$ |
$[0, -1, 0, 2104, -114705]$ |
\(y^2=x^3-x^2+2104x-114705\) |
510.2.0.? |
$[]$ |
4080.h1 |
4080c1 |
4080.h |
4080c |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{4} \cdot 3^{13} \cdot 5 \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$6.122585649$ |
$1$ |
|
$2$ |
$2496$ |
$0.522357$ |
$-951468070144/135517455$ |
$0.93077$ |
$3.67746$ |
$[0, -1, 0, -516, -4869]$ |
\(y^2=x^3-x^2-516x-4869\) |
510.2.0.? |
$[(443, 9301)]$ |
4080.i1 |
4080d3 |
4080.i |
4080d |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( 2^{11} \cdot 3^{7} \cdot 5^{12} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.7 |
2B |
$120$ |
$48$ |
$0$ |
$24.93718859$ |
$1$ |
|
$1$ |
$215040$ |
$2.766361$ |
$1059623036730633329075378/154307373046875$ |
$1.05545$ |
$7.57105$ |
$[0, -1, 0, -26972376, -53908152624]$ |
\(y^2=x^3-x^2-26972376x-53908152624\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 12.12.0-4.c.1.2, 24.24.0-24.s.1.3, $\ldots$ |
$[(-3244605640510/32893, 1639755421581922/32893)]$ |
4080.i2 |
4080d4 |
4080.i |
4080d |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( 2^{11} \cdot 3^{28} \cdot 5^{3} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.8 |
2B |
$120$ |
$48$ |
$0$ |
$6.234297148$ |
$1$ |
|
$3$ |
$215040$ |
$2.766361$ |
$1664865424893526702418/826424127435466125$ |
$1.06099$ |
$6.79452$ |
$[0, -1, 0, -3135656, 807066000]$ |
\(y^2=x^3-x^2-3135656x+807066000\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 20.12.0-4.c.1.2, 24.24.0-24.y.1.16, $\ldots$ |
$[(256, 4588)]$ |
4080.i3 |
4080d2 |
4080.i |
4080d |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( 2^{10} \cdot 3^{14} \cdot 5^{6} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.1 |
2Cs |
$120$ |
$48$ |
$0$ |
$12.46859429$ |
$1$ |
|
$3$ |
$107520$ |
$2.419788$ |
$521902963282042184836/6241849278890625$ |
$1.03337$ |
$6.57162$ |
$[0, -1, 0, -1690656, -836766000]$ |
\(y^2=x^3-x^2-1690656x-836766000\) |
2.6.0.a.1, 8.12.0-2.a.1.1, 12.12.0-2.a.1.1, 20.12.0-2.a.1.1, 24.24.0-24.b.1.3, $\ldots$ |
$[(-1107784/37, 45086524/37)]$ |
4080.i4 |
4080d1 |
4080.i |
4080d |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{8} \cdot 3^{7} \cdot 5^{3} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.12 |
2B |
$120$ |
$48$ |
$0$ |
$24.93718859$ |
$1$ |
|
$1$ |
$53760$ |
$2.073215$ |
$-3579968623693264/1906997690433375$ |
$1.07223$ |
$5.79578$ |
$[0, -1, 0, -20236, -33628064]$ |
\(y^2=x^3-x^2-20236x-33628064\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 12.12.0-4.c.1.1, 20.12.0-4.c.1.1, $\ldots$ |
$[(81816638940/15133, 7445500609661912/15133)]$ |
4080.j1 |
4080h1 |
4080.j |
4080h |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{4} \cdot 3^{11} \cdot 5 \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$10560$ |
$1.392147$ |
$-6016521998966814976/4351616055$ |
$1.01934$ |
$5.53457$ |
$[0, -1, 0, -95480, 11387667]$ |
\(y^2=x^3-x^2-95480x+11387667\) |
510.2.0.? |
$[]$ |
4080.k1 |
4080i2 |
4080.k |
4080i |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( 2^{11} \cdot 3^{2} \cdot 5^{6} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2040$ |
$12$ |
$0$ |
$0.198747025$ |
$1$ |
|
$13$ |
$2304$ |
$0.574795$ |
$11683450802/2390625$ |
$0.90838$ |
$3.70539$ |
$[0, -1, 0, -600, 4752]$ |
\(y^2=x^3-x^2-600x+4752\) |
2.3.0.a.1, 60.6.0.c.1, 136.6.0.?, 2040.12.0.? |
$[(24, 60)]$ |
4080.k2 |
4080i1 |
4080.k |
4080i |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{10} \cdot 3 \cdot 5^{3} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2040$ |
$12$ |
$0$ |
$0.397494051$ |
$1$ |
|
$9$ |
$1152$ |
$0.228221$ |
$54607676/108375$ |
$0.86707$ |
$3.08338$ |
$[0, -1, 0, 80, 400]$ |
\(y^2=x^3-x^2+80x+400\) |
2.3.0.a.1, 30.6.0.a.1, 136.6.0.?, 2040.12.0.? |
$[(0, 20)]$ |
4080.l1 |
4080v4 |
4080.l |
4080v |
$4$ |
$6$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( 2^{13} \cdot 3^{2} \cdot 5^{2} \cdot 17^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$2040$ |
$96$ |
$1$ |
$1.031410774$ |
$1$ |
|
$7$ |
$20736$ |
$1.764727$ |
$15916310615119911121/2210850$ |
$1.02634$ |
$6.31857$ |
$[0, -1, 0, -838480, 295799872]$ |
\(y^2=x^3-x^2-838480x+295799872\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.9, 60.48.0-60.t.1.13, $\ldots$ |
$[(528, 40)]$ |
4080.l2 |
4080v3 |
4080.l |
4080v |
$4$ |
$6$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{14} \cdot 3 \cdot 5 \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$2040$ |
$96$ |
$1$ |
$2.062821549$ |
$1$ |
|
$3$ |
$10368$ |
$1.418154$ |
$-3884775383991601/1448254140$ |
$0.99304$ |
$5.31814$ |
$[0, -1, 0, -52400, 4635840]$ |
\(y^2=x^3-x^2-52400x+4635840\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.9, 30.24.0.b.1, $\ldots$ |
$[(136, 80)]$ |
4080.l3 |
4080v2 |
4080.l |
4080v |
$4$ |
$6$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( 2^{15} \cdot 3^{6} \cdot 5^{6} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$2040$ |
$96$ |
$1$ |
$0.343803591$ |
$1$ |
|
$11$ |
$6912$ |
$1.215422$ |
$31080575499121/1549125000$ |
$0.96847$ |
$4.73732$ |
$[0, -1, 0, -10480, 398272]$ |
\(y^2=x^3-x^2-10480x+398272\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.3, 60.48.0-60.t.1.14, $\ldots$ |
$[(24, 400)]$ |
4080.l4 |
4080v1 |
4080.l |
4080v |
$4$ |
$6$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{18} \cdot 3^{3} \cdot 5^{3} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$2040$ |
$96$ |
$1$ |
$0.687607183$ |
$1$ |
|
$7$ |
$3456$ |
$0.868847$ |
$1723683599/62424000$ |
$0.97642$ |
$4.05418$ |
$[0, -1, 0, 400, 24000]$ |
\(y^2=x^3-x^2+400x+24000\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.3, 30.24.0.b.1, $\ldots$ |
$[(10, 170)]$ |
4080.m1 |
4080f1 |
4080.m |
4080f |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{3} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$960$ |
$0.160761$ |
$-73934023936/516375$ |
$0.90123$ |
$3.34514$ |
$[0, -1, 0, -220, -1193]$ |
\(y^2=x^3-x^2-220x-1193\) |
510.2.0.? |
$[]$ |
4080.n1 |
4080w2 |
4080.n |
4080w |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( 2^{19} \cdot 3^{6} \cdot 5^{2} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2040$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$16128$ |
$1.531826$ |
$172735174415217961/39657600$ |
$1.00968$ |
$5.77450$ |
$[0, -1, 0, -185640, 30848112]$ |
\(y^2=x^3-x^2-185640x+30848112\) |
2.3.0.a.1, 60.6.0.c.1, 136.6.0.?, 2040.12.0.? |
$[]$ |
4080.n2 |
4080w1 |
4080.n |
4080w |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{26} \cdot 3^{3} \cdot 5 \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2040$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$8064$ |
$1.185251$ |
$-41713327443241/639221760$ |
$0.96929$ |
$4.77585$ |
$[0, -1, 0, -11560, 488560]$ |
\(y^2=x^3-x^2-11560x+488560\) |
2.3.0.a.1, 30.6.0.a.1, 136.6.0.?, 2040.12.0.? |
$[]$ |
4080.o1 |
4080g2 |
4080.o |
4080g |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( 2^{11} \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2040$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1280$ |
$0.324048$ |
$20183398562/3825$ |
$0.90582$ |
$3.77115$ |
$[0, -1, 0, -720, -7200]$ |
\(y^2=x^3-x^2-720x-7200\) |
2.3.0.a.1, 60.6.0.c.1, 136.6.0.?, 2040.12.0.? |
$[]$ |
4080.o2 |
4080g1 |
4080.o |
4080g |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{10} \cdot 3 \cdot 5 \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2040$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$640$ |
$-0.022526$ |
$-7086244/4335$ |
$0.93340$ |
$2.81776$ |
$[0, -1, 0, -40, -128]$ |
\(y^2=x^3-x^2-40x-128\) |
2.3.0.a.1, 30.6.0.a.1, 136.6.0.?, 2040.12.0.? |
$[]$ |
4080.p1 |
4080j1 |
4080.p |
4080j |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{7} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.530731877$ |
$1$ |
|
$4$ |
$6720$ |
$1.038479$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$4.35064$ |
$[0, -1, 0, -2840, -81813]$ |
\(y^2=x^3-x^2-2840x-81813\) |
510.2.0.? |
$[(79, 425)]$ |
4080.q1 |
4080x1 |
4080.q |
4080x |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{5} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4320$ |
$0.642114$ |
$-34158804736/1045659375$ |
$0.98248$ |
$3.73039$ |
$[0, -1, 0, -170, -6225]$ |
\(y^2=x^3-x^2-170x-6225\) |
510.2.0.? |
$[]$ |
4080.r1 |
4080z2 |
4080.r |
4080z |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( 2^{13} \cdot 3^{10} \cdot 5^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2040$ |
$12$ |
$0$ |
$0.288216701$ |
$1$ |
|
$13$ |
$3840$ |
$0.901698$ |
$420021471169/50191650$ |
$0.94166$ |
$4.21962$ |
$[0, 1, 0, -2496, -43596]$ |
\(y^2=x^3+x^2-2496x-43596\) |
2.3.0.a.1, 60.6.0.c.1, 136.6.0.?, 2040.12.0.? |
$[(-30, 72)]$ |
4080.r2 |
4080z1 |
4080.r |
4080z |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{14} \cdot 3^{5} \cdot 5 \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2040$ |
$12$ |
$0$ |
$0.576433403$ |
$1$ |
|
$9$ |
$1920$ |
$0.555124$ |
$302111711/1404540$ |
$0.92029$ |
$3.58375$ |
$[0, 1, 0, 224, -3340]$ |
\(y^2=x^3+x^2+224x-3340\) |
2.3.0.a.1, 30.6.0.a.1, 136.6.0.?, 2040.12.0.? |
$[(26, 144)]$ |
4080.s1 |
4080ba2 |
4080.s |
4080ba |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( 2^{21} \cdot 3^{14} \cdot 5^{2} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2040$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$48384$ |
$2.035748$ |
$10901014250685308569/1040774054400$ |
$1.02506$ |
$6.27304$ |
$[0, 1, 0, -739096, -244794220]$ |
\(y^2=x^3+x^2-739096x-244794220\) |
2.3.0.a.1, 60.6.0.c.1, 136.6.0.?, 2040.12.0.? |
$[]$ |
4080.s2 |
4080ba1 |
4080.s |
4080ba |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{30} \cdot 3^{7} \cdot 5 \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2040$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$24192$ |
$1.689175$ |
$-2113364608155289/828431400960$ |
$0.99736$ |
$5.30705$ |
$[0, 1, 0, -42776, -4424556]$ |
\(y^2=x^3+x^2-42776x-4424556\) |
2.3.0.a.1, 30.6.0.a.1, 136.6.0.?, 2040.12.0.? |
$[]$ |
4080.t1 |
4080k3 |
4080.t |
4080k |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( 2^{10} \cdot 3 \cdot 5^{4} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2040$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1536$ |
$0.434475$ |
$142315306276/31875$ |
$0.91748$ |
$3.92270$ |
$[0, 1, 0, -1096, 13604]$ |
\(y^2=x^3+x^2-1096x+13604\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0-4.c.1.5, 68.12.0-4.c.1.2, $\ldots$ |
$[]$ |
4080.t2 |
4080k2 |
4080.t |
4080k |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$1020$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$768$ |
$0.087902$ |
$192143824/65025$ |
$0.84117$ |
$2.96119$ |
$[0, 1, 0, -76, 140]$ |
\(y^2=x^3+x^2-76x+140\) |
2.6.0.a.1, 12.12.0-2.a.1.1, 20.12.0-2.a.1.1, 60.24.0-60.b.1.3, 68.12.0-2.a.1.1, $\ldots$ |
$[]$ |
4080.t3 |
4080k1 |
4080.t |
4080k |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( 2^{4} \cdot 3^{4} \cdot 5 \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2040$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$384$ |
$-0.258672$ |
$212629504/6885$ |
$0.85495$ |
$2.63989$ |
$[0, 1, 0, -31, -76]$ |
\(y^2=x^3+x^2-31x-76\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 24.12.0-4.c.1.3, 68.12.0-4.c.1.1, $\ldots$ |
$[]$ |
4080.t4 |
4080k4 |
4080.t |
4080k |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{10} \cdot 3 \cdot 5 \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2040$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1536$ |
$0.434475$ |
$1208446844/1252815$ |
$1.08469$ |
$3.34912$ |
$[0, 1, 0, 224, 1220]$ |
\(y^2=x^3+x^2+224x+1220\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 20.12.0-4.c.1.2, 30.6.0.a.1, $\ldots$ |
$[]$ |
4080.u1 |
4080l3 |
4080.u |
4080l |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( 2^{10} \cdot 3^{3} \cdot 5^{3} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2040$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$13824$ |
$1.378841$ |
$40472803590982276/281883375$ |
$0.99750$ |
$5.43321$ |
$[0, 1, 0, -72096, 7426980]$ |
\(y^2=x^3+x^2-72096x+7426980\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 20.12.0-4.c.1.2, 60.24.0-60.h.1.4, $\ldots$ |
$[]$ |
4080.u2 |
4080l2 |
4080.u |
4080l |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{6} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$1020$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$6912$ |
$1.032267$ |
$41948679809104/3291890625$ |
$0.95346$ |
$4.43990$ |
$[0, 1, 0, -4596, 109980]$ |
\(y^2=x^3+x^2-4596x+109980\) |
2.6.0.a.1, 12.12.0-2.a.1.1, 20.12.0-2.a.1.1, 60.24.0-60.a.1.3, 68.12.0-2.a.1.1, $\ldots$ |
$[]$ |
4080.u3 |
4080l1 |
4080.u |
4080l |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( 2^{4} \cdot 3^{12} \cdot 5^{3} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2040$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$3456$ |
$0.685694$ |
$5951163357184/1129312125$ |
$0.97411$ |
$3.87151$ |
$[0, 1, 0, -951, -9576]$ |
\(y^2=x^3+x^2-951x-9576\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 24.12.0-4.c.1.3, 68.12.0-4.c.1.1, $\ldots$ |
$[]$ |
4080.u4 |
4080l4 |
4080.u |
4080l |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{12} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2040$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$13824$ |
$1.378841$ |
$10400706415004/112060546875$ |
$1.00063$ |
$4.78398$ |
$[0, 1, 0, 4584, 502884]$ |
\(y^2=x^3+x^2+4584x+502884\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0-4.c.1.5, 68.12.0-4.c.1.2, $\ldots$ |
$[]$ |
4080.v1 |
4080y1 |
4080.v |
4080y |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{4} \cdot 3 \cdot 5^{5} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1.922479642$ |
$1$ |
|
$2$ |
$480$ |
$-0.091106$ |
$-1755904/159375$ |
$0.90854$ |
$2.67177$ |
$[0, 1, 0, -6, 75]$ |
\(y^2=x^3+x^2-6x+75\) |
510.2.0.? |
$[(-1, 9)]$ |
4080.w1 |
4080m1 |
4080.w |
4080m |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{4} \cdot 3^{7} \cdot 5^{13} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$17472$ |
$1.532228$ |
$3086803246205696/45384521484375$ |
$1.03320$ |
$5.00771$ |
$[0, 1, 0, 7644, 1273275]$ |
\(y^2=x^3+x^2+7644x+1273275\) |
510.2.0.? |
$[]$ |
4080.x1 |
4080bb3 |
4080.x |
4080bb |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( 2^{15} \cdot 3^{2} \cdot 5^{8} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.104 |
2B |
$136$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$18432$ |
$1.493681$ |
$30949975477232209/478125000$ |
$1.00249$ |
$5.56769$ |
$[0, 1, 0, -104656, 12996500]$ |
\(y^2=x^3+x^2-104656x+12996500\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.m.1.7, 68.12.0-4.c.1.2, 136.48.0.? |
$[]$ |