Learn more

Refine search


Results (25 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-mm images
42135.a1 42135.a 35532 3 \cdot 5 \cdot 53^{2} 00 Z/2Z\Z/2\Z 11 [1,1,1,4012715,3094399168][1, 1, 1, -4012715, -3094399168] y2+xy+y=x3+x24012715x3094399168y^2+xy+y=x^3+x^2-4012715x-3094399168 2.3.0.a.1, 4.12.0-4.c.1.2, 120.24.0.?, 530.6.0.?, 1060.24.0.?, \ldots
42135.a2 42135.a 35532 3 \cdot 5 \cdot 53^{2} 00 Z/2Z\Z/2\Z 11 [1,1,1,2186865,1221685512][1, 1, 1, -2186865, 1221685512] y2+xy+y=x3+x22186865x+1221685512y^2+xy+y=x^3+x^2-2186865x+1221685512 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 60.12.0.h.1, 120.24.0.?, \ldots
42135.a3 42135.a 35532 3 \cdot 5 \cdot 53^{2} 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,1,1,290790,31999278][1, 1, 1, -290790, -31999278] y2+xy+y=x3+x2290790x31999278y^2+xy+y=x^3+x^2-290790x-31999278 2.6.0.a.1, 4.12.0-2.a.1.1, 60.24.0-60.a.1.6, 636.24.0.?, 1060.24.0.?, \ldots
42135.a4 42135.a 35532 3 \cdot 5 \cdot 53^{2} 00 Z/4Z\Z/4\Z 11 [1,1,1,60335,3628378][1, 1, 1, 60335, -3628378] y2+xy+y=x3+x2+60335x3628378y^2+xy+y=x^3+x^2+60335x-3628378 2.3.0.a.1, 4.12.0-4.c.1.1, 120.24.0.?, 318.6.0.?, 636.24.0.?, \ldots
42135.b1 42135.b 35532 3 \cdot 5 \cdot 53^{2} 11 trivial\mathsf{trivial} 0.1069643910.106964391 [1,0,0,1675,8750][1, 0, 0, -1675, 8750] y2+xy=x31675x+8750y^2+xy=x^3-1675x+8750 12.2.0.a.1
42135.c1 42135.c 35532 3 \cdot 5 \cdot 53^{2} 11 Z/2Z\Z/2\Z 10.5727135210.57271352 [1,0,0,2383495,1416543238][1, 0, 0, -2383495, -1416543238] y2+xy=x32383495x1416543238y^2+xy=x^3-2383495x-1416543238 2.3.0.a.1, 4.12.0-4.c.1.2, 120.24.0.?, 636.24.0.?, 2120.24.0.?, \ldots
42135.c2 42135.c 35532 3 \cdot 5 \cdot 53^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 21.1454270421.14542704 [1,0,0,150340,21714625][1, 0, 0, -150340, -21714625] y2+xy=x3150340x21714625y^2+xy=x^3-150340x-21714625 2.6.0.a.1, 4.12.0-2.a.1.1, 60.24.0-60.b.1.6, 636.24.0.?, 1060.24.0.?, \ldots
42135.c3 42135.c 35532 3 \cdot 5 \cdot 53^{2} 11 Z/4Z\Z/4\Z 10.5727135210.57271352 [1,0,0,23935,962432][1, 0, 0, -23935, 962432] y2+xy=x323935x+962432y^2+xy=x^3-23935x+962432 2.3.0.a.1, 4.12.0-4.c.1.1, 120.24.0.?, 530.6.0.?, 1060.24.0.?, \ldots
42135.c4 42135.c 35532 3 \cdot 5 \cdot 53^{2} 11 Z/2Z\Z/2\Z 42.2908540842.29085408 [1,0,0,60335,77712040][1, 0, 0, 60335, -77712040] y2+xy=x3+60335x77712040y^2+xy=x^3+60335x-77712040 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 30.6.0.a.1, 60.12.0.g.1, \ldots
42135.d1 42135.d 35532 3 \cdot 5 \cdot 53^{2} 00 trivial\mathsf{trivial} 11 [0,1,1,99251,11729578][0, -1, 1, -99251, -11729578] y2+y=x3x299251x11729578y^2+y=x^3-x^2-99251x-11729578 10.2.0.a.1
42135.e1 42135.e 35532 3 \cdot 5 \cdot 53^{2} 00 trivial\mathsf{trivial} 11 [0,1,1,1475470321,21714707659851][0, -1, 1, -1475470321, 21714707659851] y2+y=x3x21475470321x+21714707659851y^2+y=x^3-x^2-1475470321x+21714707659851 10.2.0.a.1
42135.f1 42135.f 35532 3 \cdot 5 \cdot 53^{2} 00 trivial\mathsf{trivial} 11 [0,1,1,1380155,2295397628][0, -1, 1, -1380155, 2295397628] y2+y=x3x21380155x+2295397628y^2+y=x^3-x^2-1380155x+2295397628 3.4.0.a.1, 30.8.0-3.a.1.2, 159.8.0.?, 1590.16.0.?
42135.f2 42135.f 35532 3 \cdot 5 \cdot 53^{2} 00 trivial\mathsf{trivial} 11 [0,1,1,12271585,57895806619][0, -1, 1, 12271585, -57895806619] y2+y=x3x2+12271585x57895806619y^2+y=x^3-x^2+12271585x-57895806619 3.4.0.a.1, 30.8.0-3.a.1.1, 159.8.0.?, 1590.16.0.?
42135.g1 42135.g 35532 3 \cdot 5 \cdot 53^{2} 11 trivial\mathsf{trivial} 1.0961671201.096167120 [0,1,1,621725,189502969][0, 1, 1, -621725, -189502969] y2+y=x3+x2621725x189502969y^2+y=x^3+x^2-621725x-189502969 1590.2.0.?
42135.h1 42135.h 35532 3 \cdot 5 \cdot 53^{2} 11 trivial\mathsf{trivial} 1.8254195751.825419575 [0,1,1,35,91][0, 1, 1, -35, -91] y2+y=x3+x235x91y^2+y=x^3+x^2-35x-91 10.2.0.a.1
42135.i1 42135.i 35532 3 \cdot 5 \cdot 53^{2} 11 trivial\mathsf{trivial} 0.1689165480.168916548 [0,1,1,525265,145678306][0, 1, 1, -525265, 145678306] y2+y=x3+x2525265x+145678306y^2+y=x^3+x^2-525265x+145678306 10.2.0.a.1
42135.j1 42135.j 35532 3 \cdot 5 \cdot 53^{2} 00 trivial\mathsf{trivial} 11 [1,1,0,4705133,1321494198][1, 1, 0, -4705133, 1321494198] y2+xy=x3+x24705133x+1321494198y^2+xy=x^3+x^2-4705133x+1321494198 12.2.0.a.1
42135.k1 42135.k 35532 3 \cdot 5 \cdot 53^{2} 00 Z/2Z\Z/2\Z 11 [1,0,1,6067499,5753085163][1, 0, 1, -6067499, -5753085163] y2+xy+y=x36067499x5753085163y^2+xy+y=x^3-6067499x-5753085163 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 10.6.0.a.1, 16.48.0.x.2, \ldots
42135.k2 42135.k 35532 3 \cdot 5 \cdot 53^{2} 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,0,1,379274,89888353][1, 0, 1, -379274, -89888353] y2+xy+y=x3379274x89888353y^2+xy+y=x^3-379274x-89888353 2.6.0.a.1, 4.12.0.b.1, 8.48.0.k.1, 20.24.0.c.1, 40.96.1.cc.2, \ldots
42135.k3 42135.k 35532 3 \cdot 5 \cdot 53^{2} 00 Z/2Z\Z/2\Z 11 [1,0,1,309049,124186243][1, 0, 1, -309049, -124186243] y2+xy+y=x3309049x124186243y^2+xy+y=x^3-309049x-124186243 2.3.0.a.1, 4.6.0.c.1, 8.24.0.ba.2, 16.48.0.u.2, 20.12.0.h.1, \ldots
42135.k4 42135.k 35532 3 \cdot 5 \cdot 53^{2} 00 Z/2Z\Z/2\Z 11 [1,0,1,224779,40999811][1, 0, 1, -224779, 40999811] y2+xy+y=x3224779x+40999811y^2+xy+y=x^3-224779x+40999811 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 24.24.0.by.2, \ldots
42135.k5 42135.k 35532 3 \cdot 5 \cdot 53^{2} 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,0,1,28149,843053][1, 0, 1, -28149, -843053] y2+xy+y=x328149x843053y^2+xy+y=x^3-28149x-843053 2.6.0.a.1, 4.24.0.b.1, 8.48.0.b.2, 24.96.1.n.1, 40.96.1.s.1, \ldots
42135.k6 42135.k 35532 3 \cdot 5 \cdot 53^{2} 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,0,1,14104,634481][1, 0, 1, -14104, 634481] y2+xy+y=x314104x+634481y^2+xy+y=x^3-14104x+634481 2.6.0.a.1, 4.12.0.b.1, 8.24.0.i.1, 16.48.0.d.2, 24.48.0.bb.2, \ldots
42135.k7 42135.k 35532 3 \cdot 5 \cdot 53^{2} 00 Z/2Z\Z/2\Z 11 [1,0,1,59,27737][1, 0, 1, -59, 27737] y2+xy+y=x359x+27737y^2+xy+y=x^3-59x+27737 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 24.24.0.bz.1, \ldots
42135.k8 42135.k 35532 3 \cdot 5 \cdot 53^{2} 00 Z/2Z\Z/2\Z 11 [1,0,1,98256,6303749][1, 0, 1, 98256, -6303749] y2+xy+y=x3+98256x6303749y^2+xy+y=x^3+98256x-6303749 2.3.0.a.1, 4.12.0.d.1, 8.48.0.n.2, 24.96.1.cv.2, 80.96.1.?, \ldots
  displayed columns for results