Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
4275.a1 |
4275i2 |
4275.a |
4275i |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 3^{8} \cdot 5^{6} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$570$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$67200$ |
$2.005432$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$6.34210$ |
$[0, 0, 1, -987825, 377893156]$ |
\(y^2+y=x^3-987825x+377893156\) |
5.12.0.a.2, 15.24.0-5.a.2.2, 38.2.0.a.1, 190.24.1.?, 570.48.1.? |
$[]$ |
4275.a2 |
4275i1 |
4275.a |
4275i |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 3^{16} \cdot 5^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$570$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$13440$ |
$1.200714$ |
$841232384/1121931$ |
$1.00490$ |
$4.43327$ |
$[0, 0, 1, 4425, 129406]$ |
\(y^2+y=x^3+4425x+129406\) |
5.12.0.a.1, 15.24.0-5.a.1.2, 38.2.0.a.1, 190.24.1.?, 570.48.1.? |
$[]$ |
4275.b1 |
4275j1 |
4275.b |
4275j |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 3^{8} \cdot 5^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3456$ |
$0.517477$ |
$-1404928/171$ |
$0.86512$ |
$3.65942$ |
$[0, 0, 1, -525, -5094]$ |
\(y^2+y=x^3-525x-5094\) |
38.2.0.a.1 |
$[]$ |
4275.c1 |
4275m1 |
4275.c |
4275m |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 3^{7} \cdot 5^{2} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$0.169341172$ |
$1$ |
|
$6$ |
$768$ |
$0.017835$ |
$-16539745/57$ |
$0.84560$ |
$3.16221$ |
$[1, -1, 1, -140, 672]$ |
\(y^2+xy+y=x^3-x^2-140x+672\) |
228.2.0.? |
$[(8, 0)]$ |
4275.d1 |
4275d2 |
4275.d |
4275d |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( 3^{3} \cdot 5^{3} \cdot 19 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1140$ |
$12$ |
$0$ |
$0.770266764$ |
$1$ |
|
$4$ |
$1024$ |
$0.323141$ |
$115003963647/19$ |
$1.06999$ |
$4.01797$ |
$[1, -1, 1, -1520, 23182]$ |
\(y^2+xy+y=x^3-x^2-1520x+23182\) |
2.3.0.a.1, 60.6.0.c.1, 76.6.0.?, 570.6.0.?, 1140.12.0.? |
$[(19, 20)]$ |
4275.d2 |
4275d1 |
4275.d |
4275d |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 3^{3} \cdot 5^{3} \cdot 19^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1140$ |
$12$ |
$0$ |
$0.385133382$ |
$1$ |
|
$9$ |
$512$ |
$-0.023433$ |
$-27818127/361$ |
$1.00533$ |
$3.02463$ |
$[1, -1, 1, -95, 382]$ |
\(y^2+xy+y=x^3-x^2-95x+382\) |
2.3.0.a.1, 30.6.0.a.1, 76.6.0.?, 1140.12.0.? |
$[(4, 5)]$ |
4275.e1 |
4275q2 |
4275.e |
4275q |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( 3^{6} \cdot 5^{9} \cdot 19^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5120$ |
$1.027367$ |
$13312053/361$ |
$0.88614$ |
$4.48306$ |
$[1, -1, 1, -5555, -154178]$ |
\(y^2+xy+y=x^3-x^2-5555x-154178\) |
2.3.0.a.1, 10.6.0.a.1, 76.6.0.?, 380.12.0.? |
$[]$ |
4275.e2 |
4275q1 |
4275.e |
4275q |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 3^{6} \cdot 5^{9} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$2560$ |
$0.680793$ |
$27/19$ |
$1.11940$ |
$3.76470$ |
$[1, -1, 1, 70, -7928]$ |
\(y^2+xy+y=x^3-x^2+70x-7928\) |
2.3.0.a.1, 20.6.0.c.1, 76.6.0.?, 190.6.0.?, 380.12.0.? |
$[]$ |
4275.f1 |
4275h1 |
4275.f |
4275h |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 3^{13} \cdot 5^{10} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$40320$ |
$1.955042$ |
$17446602575/15000633$ |
$0.97617$ |
$5.53415$ |
$[1, -1, 1, 103945, -9015928]$ |
\(y^2+xy+y=x^3-x^2+103945x-9015928\) |
228.2.0.? |
$[]$ |
4275.g1 |
4275c2 |
4275.g |
4275c |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( 3^{9} \cdot 5^{9} \cdot 19 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1140$ |
$12$ |
$0$ |
$12.74496912$ |
$1$ |
|
$0$ |
$15360$ |
$1.677166$ |
$115003963647/19$ |
$1.06999$ |
$5.96142$ |
$[1, -1, 1, -341930, -76872428]$ |
\(y^2+xy+y=x^3-x^2-341930x-76872428\) |
2.3.0.a.1, 60.6.0.c.1, 76.6.0.?, 570.6.0.?, 1140.12.0.? |
$[(302003/11, 159236060/11)]$ |
4275.g2 |
4275c1 |
4275.g |
4275c |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 3^{9} \cdot 5^{9} \cdot 19^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1140$ |
$12$ |
$0$ |
$6.372484561$ |
$1$ |
|
$3$ |
$7680$ |
$1.330591$ |
$-27818127/361$ |
$1.00533$ |
$4.96808$ |
$[1, -1, 1, -21305, -1204928]$ |
\(y^2+xy+y=x^3-x^2-21305x-1204928\) |
2.3.0.a.1, 30.6.0.a.1, 76.6.0.?, 1140.12.0.? |
$[(2468, 121135)]$ |
4275.h1 |
4275l2 |
4275.h |
4275l |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( 3^{16} \cdot 5^{8} \cdot 19 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1140$ |
$12$ |
$0$ |
$1.424079894$ |
$1$ |
|
$6$ |
$15360$ |
$1.472668$ |
$48587168449/28048275$ |
$1.03180$ |
$4.88664$ |
$[1, -1, 1, -17105, 47022]$ |
\(y^2+xy+y=x^3-x^2-17105x+47022\) |
2.3.0.a.1, 60.6.0.c.1, 76.6.0.?, 1140.12.0.? |
$[(-16, 570)]$ |
4275.h2 |
4275l1 |
4275.h |
4275l |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 3^{11} \cdot 5^{7} \cdot 19^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1140$ |
$12$ |
$0$ |
$2.848159789$ |
$1$ |
|
$5$ |
$7680$ |
$1.126095$ |
$756058031/438615$ |
$1.00322$ |
$4.38870$ |
$[1, -1, 1, 4270, 4272]$ |
\(y^2+xy+y=x^3-x^2+4270x+4272\) |
2.3.0.a.1, 30.6.0.a.1, 76.6.0.?, 1140.12.0.? |
$[(18, 285)]$ |
4275.i1 |
4275k3 |
4275.i |
4275k |
$3$ |
$9$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 3^{6} \cdot 5^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$5130$ |
$1296$ |
$43$ |
$1.452281787$ |
$1$ |
|
$0$ |
$7776$ |
$1.387465$ |
$-50357871050752/19$ |
$1.10495$ |
$5.71715$ |
$[0, 0, 1, -173100, 27720031]$ |
\(y^2+y=x^3-173100x+27720031\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.2, 27.36.0.a.1, 38.2.0.a.1, $\ldots$ |
$[(961/2, 5/2)]$ |
4275.i2 |
4275k2 |
4275.i |
4275k |
$3$ |
$9$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 3^{6} \cdot 5^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$5130$ |
$1296$ |
$43$ |
$0.484093929$ |
$1$ |
|
$4$ |
$2592$ |
$0.838158$ |
$-89915392/6859$ |
$1.03310$ |
$4.14884$ |
$[0, 0, 1, -2100, 39406]$ |
\(y^2+y=x^3-2100x+39406\) |
3.12.0.a.1, 9.36.0.b.1, 15.24.0-3.a.1.1, 38.2.0.a.1, 45.72.0-9.b.1.1, $\ldots$ |
$[(34, 85)]$ |
4275.i3 |
4275k1 |
4275.i |
4275k |
$3$ |
$9$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 3^{6} \cdot 5^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$5130$ |
$1296$ |
$43$ |
$1.452281787$ |
$1$ |
|
$2$ |
$864$ |
$0.288852$ |
$32768/19$ |
$1.31757$ |
$3.18706$ |
$[0, 0, 1, 150, 31]$ |
\(y^2+y=x^3+150x+31\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.1, 27.36.0.a.1, 38.2.0.a.1, $\ldots$ |
$[(1, 13)]$ |
4275.j1 |
4275g4 |
4275.j |
4275g |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( 3^{8} \cdot 5^{9} \cdot 19^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2280$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$55296$ |
$2.108166$ |
$23977812996389881/146611125$ |
$1.09826$ |
$6.45463$ |
$[1, -1, 0, -1351692, 605208591]$ |
\(y^2+xy=x^3-x^2-1351692x+605208591\) |
2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 12.12.0-4.c.1.1, 20.12.0.g.1, $\ldots$ |
$[]$ |
4275.j2 |
4275g3 |
4275.j |
4275g |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( 3^{8} \cdot 5^{18} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2280$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$55296$ |
$2.108166$ |
$209595169258201/41748046875$ |
$0.98100$ |
$5.88772$ |
$[1, -1, 0, -278442, -45727659]$ |
\(y^2+xy=x^3-x^2-278442x-45727659\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0.z.1, 60.12.0-4.c.1.2, $\ldots$ |
$[]$ |
4275.j3 |
4275g2 |
4275.j |
4275g |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( 3^{10} \cdot 5^{12} \cdot 19^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$1140$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$27648$ |
$1.761591$ |
$6189976379881/456890625$ |
$0.95560$ |
$5.46642$ |
$[1, -1, 0, -86067, 9099216]$ |
\(y^2+xy=x^3-x^2-86067x+9099216\) |
2.6.0.a.1, 12.12.0-2.a.1.1, 20.12.0.b.1, 60.24.0-20.b.1.2, 76.12.0.?, $\ldots$ |
$[]$ |
4275.j4 |
4275g1 |
4275.j |
4275g |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 3^{14} \cdot 5^{9} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2280$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$13824$ |
$1.415016$ |
$1256216039/15582375$ |
$0.94875$ |
$4.81032$ |
$[1, -1, 0, 5058, 624591]$ |
\(y^2+xy=x^3-x^2+5058x+624591\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0.z.1, 120.24.0.?, $\ldots$ |
$[]$ |
4275.k1 |
4275b2 |
4275.k |
4275b |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( 3^{9} \cdot 5^{3} \cdot 19 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1140$ |
$12$ |
$0$ |
$9.608092465$ |
$1$ |
|
$0$ |
$3072$ |
$0.872447$ |
$115003963647/19$ |
$1.06999$ |
$4.80640$ |
$[1, -1, 0, -13677, -612244]$ |
\(y^2+xy=x^3-x^2-13677x-612244\) |
2.3.0.a.1, 60.6.0.c.1, 76.6.0.?, 570.6.0.?, 1140.12.0.? |
$[(12463/6, 1259593/6)]$ |
4275.k2 |
4275b1 |
4275.k |
4275b |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 3^{9} \cdot 5^{3} \cdot 19^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1140$ |
$12$ |
$0$ |
$4.804046232$ |
$1$ |
|
$1$ |
$1536$ |
$0.525873$ |
$-27818127/361$ |
$1.00533$ |
$3.81306$ |
$[1, -1, 0, -852, -9469]$ |
\(y^2+xy=x^3-x^2-852x-9469\) |
2.3.0.a.1, 30.6.0.a.1, 76.6.0.?, 1140.12.0.? |
$[(382/3, 4063/3)]$ |
4275.l1 |
4275n1 |
4275.l |
4275n |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 3^{13} \cdot 5^{4} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$0.869995144$ |
$1$ |
|
$2$ |
$8064$ |
$1.150322$ |
$17446602575/15000633$ |
$0.97617$ |
$4.37912$ |
$[1, -1, 0, 4158, -72959]$ |
\(y^2+xy=x^3-x^2+4158x-72959\) |
228.2.0.? |
$[(104, 1163)]$ |
4275.m1 |
4275e3 |
4275.m |
4275e |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( 3^{10} \cdot 5^{6} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2280$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6144$ |
$1.109016$ |
$115714886617/1539$ |
$0.98111$ |
$4.99043$ |
$[1, -1, 0, -22842, -1323059]$ |
\(y^2+xy=x^3-x^2-22842x-1323059\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 40.12.0-4.c.1.5, 60.12.0-4.c.1.2, $\ldots$ |
$[]$ |
4275.m2 |
4275e2 |
4275.m |
4275e |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( 3^{8} \cdot 5^{6} \cdot 19^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$1140$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$3072$ |
$0.762443$ |
$30664297/3249$ |
$0.90727$ |
$4.00535$ |
$[1, -1, 0, -1467, -19184]$ |
\(y^2+xy=x^3-x^2-1467x-19184\) |
2.6.0.a.1, 12.12.0.b.1, 20.12.0-2.a.1.1, 60.24.0-12.b.1.2, 76.12.0.?, $\ldots$ |
$[]$ |
4275.m3 |
4275e1 |
4275.m |
4275e |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( 3^{7} \cdot 5^{6} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2280$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1536$ |
$0.415869$ |
$389017/57$ |
$0.96267$ |
$3.48299$ |
$[1, -1, 0, -342, 2191]$ |
\(y^2+xy=x^3-x^2-342x+2191\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 24.12.0.z.1, 114.6.0.?, $\ldots$ |
$[]$ |
4275.m4 |
4275e4 |
4275.m |
4275e |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 3^{7} \cdot 5^{6} \cdot 19^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2280$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6144$ |
$1.109016$ |
$67419143/390963$ |
$0.97474$ |
$4.36267$ |
$[1, -1, 0, 1908, -96809]$ |
\(y^2+xy=x^3-x^2+1908x-96809\) |
2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 20.12.0-4.c.1.1, $\ldots$ |
$[]$ |
4275.n1 |
4275a2 |
4275.n |
4275a |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( 3^{3} \cdot 5^{9} \cdot 19 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1140$ |
$12$ |
$0$ |
$3.681226927$ |
$1$ |
|
$0$ |
$5120$ |
$1.127859$ |
$115003963647/19$ |
$1.06999$ |
$5.17299$ |
$[1, -1, 0, -37992, 2859791]$ |
\(y^2+xy=x^3-x^2-37992x+2859791\) |
2.3.0.a.1, 60.6.0.c.1, 76.6.0.?, 570.6.0.?, 1140.12.0.? |
$[(455/2, -313/2)]$ |
4275.n2 |
4275a1 |
4275.n |
4275a |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 3^{3} \cdot 5^{9} \cdot 19^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1140$ |
$12$ |
$0$ |
$1.840613463$ |
$1$ |
|
$3$ |
$2560$ |
$0.781286$ |
$-27818127/361$ |
$1.00533$ |
$4.17965$ |
$[1, -1, 0, -2367, 45416]$ |
\(y^2+xy=x^3-x^2-2367x+45416\) |
2.3.0.a.1, 30.6.0.a.1, 76.6.0.?, 1140.12.0.? |
$[(20, 66)]$ |
4275.o1 |
4275f2 |
4275.o |
4275f |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( 3^{8} \cdot 5^{12} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1140$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$9216$ |
$1.364365$ |
$90458382169/2671875$ |
$1.09032$ |
$4.96098$ |
$[1, -1, 0, -21042, 1149741]$ |
\(y^2+xy=x^3-x^2-21042x+1149741\) |
2.3.0.a.1, 60.6.0.c.1, 76.6.0.?, 1140.12.0.? |
$[]$ |
4275.o2 |
4275f1 |
4275.o |
4275f |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 3^{7} \cdot 5^{9} \cdot 19^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1140$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$4608$ |
$1.017792$ |
$357911/135375$ |
$0.95197$ |
$4.24821$ |
$[1, -1, 0, 333, 59616]$ |
\(y^2+xy=x^3-x^2+333x+59616\) |
2.3.0.a.1, 30.6.0.a.1, 76.6.0.?, 1140.12.0.? |
$[]$ |
4275.p1 |
4275o2 |
4275.p |
4275o |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( 3^{6} \cdot 5^{3} \cdot 19^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1024$ |
$0.222648$ |
$13312053/361$ |
$0.88614$ |
$3.32804$ |
$[1, -1, 0, -222, -1189]$ |
\(y^2+xy=x^3-x^2-222x-1189\) |
2.3.0.a.1, 10.6.0.a.1, 76.6.0.?, 380.12.0.? |
$[]$ |
4275.p2 |
4275o1 |
4275.p |
4275o |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 3^{6} \cdot 5^{3} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$512$ |
$-0.123926$ |
$27/19$ |
$1.11940$ |
$2.60968$ |
$[1, -1, 0, 3, -64]$ |
\(y^2+xy=x^3-x^2+3x-64\) |
2.3.0.a.1, 20.6.0.c.1, 76.6.0.?, 190.6.0.?, 380.12.0.? |
$[]$ |
4275.q1 |
4275p1 |
4275.q |
4275p |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 3^{7} \cdot 5^{8} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$228$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3840$ |
$0.822554$ |
$-16539745/57$ |
$0.84560$ |
$4.31723$ |
$[1, -1, 0, -3492, 80541]$ |
\(y^2+xy=x^3-x^2-3492x+80541\) |
228.2.0.? |
$[]$ |