Learn more

Refine search


Results (34 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
4275.a1 4275.a \( 3^{2} \cdot 5^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -987825, 377893156]$ \(y^2+y=x^3-987825x+377893156\) 5.12.0.a.2, 15.24.0-5.a.2.2, 38.2.0.a.1, 190.24.1.?, 570.48.1.?
4275.a2 4275.a \( 3^{2} \cdot 5^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 4425, 129406]$ \(y^2+y=x^3+4425x+129406\) 5.12.0.a.1, 15.24.0-5.a.1.2, 38.2.0.a.1, 190.24.1.?, 570.48.1.?
4275.b1 4275.b \( 3^{2} \cdot 5^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -525, -5094]$ \(y^2+y=x^3-525x-5094\) 38.2.0.a.1
4275.c1 4275.c \( 3^{2} \cdot 5^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $0.169341172$ $[1, -1, 1, -140, 672]$ \(y^2+xy+y=x^3-x^2-140x+672\) 228.2.0.?
4275.d1 4275.d \( 3^{2} \cdot 5^{2} \cdot 19 \) $1$ $\Z/2\Z$ $0.770266764$ $[1, -1, 1, -1520, 23182]$ \(y^2+xy+y=x^3-x^2-1520x+23182\) 2.3.0.a.1, 60.6.0.c.1, 76.6.0.?, 570.6.0.?, 1140.12.0.?
4275.d2 4275.d \( 3^{2} \cdot 5^{2} \cdot 19 \) $1$ $\Z/2\Z$ $0.385133382$ $[1, -1, 1, -95, 382]$ \(y^2+xy+y=x^3-x^2-95x+382\) 2.3.0.a.1, 30.6.0.a.1, 76.6.0.?, 1140.12.0.?
4275.e1 4275.e \( 3^{2} \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -5555, -154178]$ \(y^2+xy+y=x^3-x^2-5555x-154178\) 2.3.0.a.1, 10.6.0.a.1, 76.6.0.?, 380.12.0.?
4275.e2 4275.e \( 3^{2} \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 70, -7928]$ \(y^2+xy+y=x^3-x^2+70x-7928\) 2.3.0.a.1, 20.6.0.c.1, 76.6.0.?, 190.6.0.?, 380.12.0.?
4275.f1 4275.f \( 3^{2} \cdot 5^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 103945, -9015928]$ \(y^2+xy+y=x^3-x^2+103945x-9015928\) 228.2.0.?
4275.g1 4275.g \( 3^{2} \cdot 5^{2} \cdot 19 \) $1$ $\Z/2\Z$ $12.74496912$ $[1, -1, 1, -341930, -76872428]$ \(y^2+xy+y=x^3-x^2-341930x-76872428\) 2.3.0.a.1, 60.6.0.c.1, 76.6.0.?, 570.6.0.?, 1140.12.0.?
4275.g2 4275.g \( 3^{2} \cdot 5^{2} \cdot 19 \) $1$ $\Z/2\Z$ $6.372484561$ $[1, -1, 1, -21305, -1204928]$ \(y^2+xy+y=x^3-x^2-21305x-1204928\) 2.3.0.a.1, 30.6.0.a.1, 76.6.0.?, 1140.12.0.?
4275.h1 4275.h \( 3^{2} \cdot 5^{2} \cdot 19 \) $1$ $\Z/2\Z$ $1.424079894$ $[1, -1, 1, -17105, 47022]$ \(y^2+xy+y=x^3-x^2-17105x+47022\) 2.3.0.a.1, 60.6.0.c.1, 76.6.0.?, 1140.12.0.?
4275.h2 4275.h \( 3^{2} \cdot 5^{2} \cdot 19 \) $1$ $\Z/2\Z$ $2.848159789$ $[1, -1, 1, 4270, 4272]$ \(y^2+xy+y=x^3-x^2+4270x+4272\) 2.3.0.a.1, 30.6.0.a.1, 76.6.0.?, 1140.12.0.?
4275.i1 4275.i \( 3^{2} \cdot 5^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $1.452281787$ $[0, 0, 1, -173100, 27720031]$ \(y^2+y=x^3-173100x+27720031\) 3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.2, 27.36.0.a.1, 38.2.0.a.1, $\ldots$
4275.i2 4275.i \( 3^{2} \cdot 5^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $0.484093929$ $[0, 0, 1, -2100, 39406]$ \(y^2+y=x^3-2100x+39406\) 3.12.0.a.1, 9.36.0.b.1, 15.24.0-3.a.1.1, 38.2.0.a.1, 45.72.0-9.b.1.1, $\ldots$
4275.i3 4275.i \( 3^{2} \cdot 5^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $1.452281787$ $[0, 0, 1, 150, 31]$ \(y^2+y=x^3+150x+31\) 3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.1, 27.36.0.a.1, 38.2.0.a.1, $\ldots$
4275.j1 4275.j \( 3^{2} \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -1351692, 605208591]$ \(y^2+xy=x^3-x^2-1351692x+605208591\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 12.12.0-4.c.1.1, 20.12.0.g.1, $\ldots$
4275.j2 4275.j \( 3^{2} \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -278442, -45727659]$ \(y^2+xy=x^3-x^2-278442x-45727659\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0.z.1, 60.12.0-4.c.1.2, $\ldots$
4275.j3 4275.j \( 3^{2} \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -86067, 9099216]$ \(y^2+xy=x^3-x^2-86067x+9099216\) 2.6.0.a.1, 12.12.0-2.a.1.1, 20.12.0.b.1, 60.24.0-20.b.1.2, 76.12.0.?, $\ldots$
4275.j4 4275.j \( 3^{2} \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 5058, 624591]$ \(y^2+xy=x^3-x^2+5058x+624591\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0.z.1, 120.24.0.?, $\ldots$
4275.k1 4275.k \( 3^{2} \cdot 5^{2} \cdot 19 \) $1$ $\Z/2\Z$ $9.608092465$ $[1, -1, 0, -13677, -612244]$ \(y^2+xy=x^3-x^2-13677x-612244\) 2.3.0.a.1, 60.6.0.c.1, 76.6.0.?, 570.6.0.?, 1140.12.0.?
4275.k2 4275.k \( 3^{2} \cdot 5^{2} \cdot 19 \) $1$ $\Z/2\Z$ $4.804046232$ $[1, -1, 0, -852, -9469]$ \(y^2+xy=x^3-x^2-852x-9469\) 2.3.0.a.1, 30.6.0.a.1, 76.6.0.?, 1140.12.0.?
4275.l1 4275.l \( 3^{2} \cdot 5^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $0.869995144$ $[1, -1, 0, 4158, -72959]$ \(y^2+xy=x^3-x^2+4158x-72959\) 228.2.0.?
4275.m1 4275.m \( 3^{2} \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -22842, -1323059]$ \(y^2+xy=x^3-x^2-22842x-1323059\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 40.12.0-4.c.1.5, 60.12.0-4.c.1.2, $\ldots$
4275.m2 4275.m \( 3^{2} \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -1467, -19184]$ \(y^2+xy=x^3-x^2-1467x-19184\) 2.6.0.a.1, 12.12.0.b.1, 20.12.0-2.a.1.1, 60.24.0-12.b.1.2, 76.12.0.?, $\ldots$
4275.m3 4275.m \( 3^{2} \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -342, 2191]$ \(y^2+xy=x^3-x^2-342x+2191\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 24.12.0.z.1, 114.6.0.?, $\ldots$
4275.m4 4275.m \( 3^{2} \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 1908, -96809]$ \(y^2+xy=x^3-x^2+1908x-96809\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 20.12.0-4.c.1.1, $\ldots$
4275.n1 4275.n \( 3^{2} \cdot 5^{2} \cdot 19 \) $1$ $\Z/2\Z$ $3.681226927$ $[1, -1, 0, -37992, 2859791]$ \(y^2+xy=x^3-x^2-37992x+2859791\) 2.3.0.a.1, 60.6.0.c.1, 76.6.0.?, 570.6.0.?, 1140.12.0.?
4275.n2 4275.n \( 3^{2} \cdot 5^{2} \cdot 19 \) $1$ $\Z/2\Z$ $1.840613463$ $[1, -1, 0, -2367, 45416]$ \(y^2+xy=x^3-x^2-2367x+45416\) 2.3.0.a.1, 30.6.0.a.1, 76.6.0.?, 1140.12.0.?
4275.o1 4275.o \( 3^{2} \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -21042, 1149741]$ \(y^2+xy=x^3-x^2-21042x+1149741\) 2.3.0.a.1, 60.6.0.c.1, 76.6.0.?, 1140.12.0.?
4275.o2 4275.o \( 3^{2} \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 333, 59616]$ \(y^2+xy=x^3-x^2+333x+59616\) 2.3.0.a.1, 30.6.0.a.1, 76.6.0.?, 1140.12.0.?
4275.p1 4275.p \( 3^{2} \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -222, -1189]$ \(y^2+xy=x^3-x^2-222x-1189\) 2.3.0.a.1, 10.6.0.a.1, 76.6.0.?, 380.12.0.?
4275.p2 4275.p \( 3^{2} \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 3, -64]$ \(y^2+xy=x^3-x^2+3x-64\) 2.3.0.a.1, 20.6.0.c.1, 76.6.0.?, 190.6.0.?, 380.12.0.?
4275.q1 4275.q \( 3^{2} \cdot 5^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -3492, 80541]$ \(y^2+xy=x^3-x^2-3492x+80541\) 228.2.0.?
  displayed columns for results