Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
448844.a1 |
448844a1 |
448844.a |
448844a |
$1$ |
$1$ |
\( 2^{2} \cdot 11 \cdot 101^{2} \) |
\( - 2^{4} \cdot 11 \cdot 101^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$22$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1852524$ |
$1.209341$ |
$-4512595968/11$ |
$1.01587$ |
$3.33962$ |
$[0, 0, 0, -40804, -3172511]$ |
\(y^2=x^3-40804x-3172511\) |
22.2.0.a.1 |
$[]$ |
448844.b1 |
448844b2 |
448844.b |
448844b |
$2$ |
$3$ |
\( 2^{2} \cdot 11 \cdot 101^{2} \) |
\( - 2^{8} \cdot 11^{3} \cdot 101^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6666$ |
$16$ |
$0$ |
$2.823328188$ |
$1$ |
|
$2$ |
$6048000$ |
$2.204571$ |
$-199794688/1331$ |
$0.99506$ |
$4.02324$ |
$[0, -1, 0, -788877, -270973319]$ |
\(y^2=x^3-x^2-788877x-270973319\) |
3.4.0.a.1, 22.2.0.a.1, 66.8.0.a.1, 303.8.0.?, 6666.16.0.? |
$[(3771, 224422)]$ |
448844.b2 |
448844b1 |
448844.b |
448844b |
$2$ |
$3$ |
\( 2^{2} \cdot 11 \cdot 101^{2} \) |
\( - 2^{8} \cdot 11 \cdot 101^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6666$ |
$16$ |
$0$ |
$8.469984566$ |
$1$ |
|
$0$ |
$2016000$ |
$1.655266$ |
$8192/11$ |
$0.84294$ |
$3.26750$ |
$[0, -1, 0, 27203, -1993351]$ |
\(y^2=x^3-x^2+27203x-1993351\) |
3.4.0.a.1, 22.2.0.a.1, 66.8.0.a.1, 303.8.0.?, 6666.16.0.? |
$[(387184/31, 256626557/31)]$ |
448844.c1 |
448844c1 |
448844.c |
448844c |
$1$ |
$1$ |
\( 2^{2} \cdot 11 \cdot 101^{2} \) |
\( - 2^{8} \cdot 11 \cdot 101^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$22$ |
$2$ |
$0$ |
$6.688165778$ |
$1$ |
|
$2$ |
$10260792$ |
$2.546551$ |
$-827392/11$ |
$0.70037$ |
$4.31174$ |
$[0, -1, 0, -2747469, 1773796729]$ |
\(y^2=x^3-x^2-2747469x+1773796729\) |
22.2.0.a.1 |
$[(-653, 57350)]$ |
448844.d1 |
448844d1 |
448844.d |
448844d |
$1$ |
$1$ |
\( 2^{2} \cdot 11 \cdot 101^{2} \) |
\( - 2^{8} \cdot 11 \cdot 101^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$22$ |
$2$ |
$0$ |
$5.505543182$ |
$1$ |
|
$0$ |
$101592$ |
$0.238992$ |
$-827392/11$ |
$0.70037$ |
$2.18405$ |
$[0, 1, 0, -269, 1631]$ |
\(y^2=x^3+x^2-269x+1631\) |
22.2.0.a.1 |
$[(-158/3, 955/3)]$ |
448844.e1 |
448844e1 |
448844.e |
448844e |
$1$ |
$1$ |
\( 2^{2} \cdot 11 \cdot 101^{2} \) |
\( - 2^{8} \cdot 11 \cdot 101^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$22$ |
$2$ |
$0$ |
$5.754486913$ |
$1$ |
|
$0$ |
$13219200$ |
$2.495274$ |
$-1952382976/112211$ |
$0.82898$ |
$4.20479$ |
$[0, 1, 0, -1686565, 883359751]$ |
\(y^2=x^3+x^2-1686565x+883359751\) |
22.2.0.a.1 |
$[(81985/9, 10670246/9)]$ |
448844.f1 |
448844f1 |
448844.f |
448844f |
$1$ |
$1$ |
\( 2^{2} \cdot 11 \cdot 101^{2} \) |
\( - 2^{4} \cdot 11 \cdot 101^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$22$ |
$2$ |
$0$ |
$1$ |
$361$ |
$19$ |
$0$ |
$187104924$ |
$3.516903$ |
$-4512595968/11$ |
$1.01587$ |
$5.46731$ |
$[0, 0, 0, -416241604, -3268641255811]$ |
\(y^2=x^3-416241604x-3268641255811\) |
22.2.0.a.1 |
$[]$ |