⌂
→
Elliptic curves
→
$\Q$
→
459
Citation
·
Feedback
·
Hide Menu
Elliptic curves over $\Q$ of conductor 459
Introduction
Overview
Random
Universe
Knowledge
L-functions
Rational
All
Modular forms
Classical
Maass
Hilbert
Bianchi
Varieties
Elliptic curves over $\Q$
Elliptic curves over $\Q(\alpha)$
Genus 2 curves over $\Q$
Higher genus families
Abelian varieties over $\F_{q}$
Fields
Number fields
$p$-adic fields
Representations
Dirichlet characters
Artin representations
Groups
Galois groups
Sato-Tate groups
Database
↑
Learn more
Source and acknowledgments
Completeness of the data
Reliability of the data
Elliptic curve labels
Congruent number curves
Stein-Watkins dataset
BHKSSW dataset
Refine search
Advanced search options
Conductor
prime
p-power
sq-free
divides
multiple of
Discriminant
j-invariant
Rank
Bad$\ p$
include
exclude
exactly
subset
Curves per isogeny class
Complex multiplication
Torsion
all
one
no potential CM
potential CM
CM field Q(sqrt(-1))
CM field Q(sqrt(-3))
CM field Q(sqrt(-7))
CM discriminant -3
CM discriminant -4
CM discriminant -7
CM discriminant -8
CM discriminant -11
CM discriminant -12
CM discriminant -16
CM discriminant -19
CM discriminant -27
CM discriminant -28
CM discriminant -43
CM discriminant -67
CM discriminant -163
trivial
order 4
order 8
order 12
ℤ/2ℤ
ℤ/3ℤ
ℤ/4ℤ
ℤ/5ℤ
ℤ/6ℤ
ℤ/7ℤ
ℤ/8ℤ
ℤ/9ℤ
ℤ/10ℤ
ℤ/12ℤ
ℤ/2ℤ⊕ℤ/2ℤ
ℤ/2ℤ⊕ℤ/4ℤ
ℤ/2ℤ⊕ℤ/6ℤ
ℤ/2ℤ⊕ℤ/8ℤ
Isogeny class degree
Cyclic isogeny degree
Isogeny class size
Integral points
Analytic order of Ш
$p\ $div$\ $|Ш|
include
exclude
exactly
subset
Regulator
Reduction
Faltings height
semistable
not semistable
potentially good
not potentially good
Galois image
Adelic level
Adelic index
Adelic genus
Nonmax$\ \ell$
include
exclude
exactly
subset
$abc$ quality
Szpiro ratio
Sort order
Select
Search again
Random curve
▲ conductor
rank
torsion
CM discriminant
regulator
analytic Ш
isogeny class size
isogeny class degree
integral points
modular degree
adelic level
adelic index
adelic genus
Faltings height
$abc$ quality
Szpiro ratio
columns to display
✓ LMFDB curve label
Cremona curve label
✓ LMFDB class label
Cremona class label
class size
class degree
✓ conductor
discriminant
✓ rank
✓ torsion
Qbar-end algebra
✓ CM discriminant
Sato-Tate group
semistable
potentially good
nonmaximal primes
ℓ-adic images
mod-ℓ images
adelic level
adelic index
adelic genus
regulator
analytic Ш
ш primes
integral points
modular degree
Faltings height
j-invariant
abc quality
szpiro ratio
Weierstrass coeffs
✓ Weierstrass equation
mod-m images
mw-generators
show all
Results (10 matches)
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
Label
Cremona label
Class
Cremona class
Class size
Class degree
Conductor
Discriminant
Rank
Torsion
$\textrm{End}^0(E_{\overline\Q})$
CM
Sato-Tate
Semistable
Potentially good
Nonmax $\ell$
$\ell$-adic images
mod-$\ell$ images
Adelic level
Adelic index
Adelic genus
Regulator
$Ш_{\textrm{an}}$
Ш primes
Integral points
Modular degree
Faltings height
j-invariant
$abc$ quality
Szpiro ratio
Weierstrass coefficients
Weierstrass equation
mod-$m$ images
MW-generators
459.a1
459b1
459.a
459b
$1$
$1$
\( 3^{3} \cdot 17 \)
\( - 3^{3} \cdot 17^{2} \)
$1$
$\mathsf{trivial}$
$\Q$
$\mathrm{SU}(2)$
$6$
$2$
$0$
$0.222162134$
$1$
$6$
$60$
$-0.569439$
$110592/289$
$0.90890$
$2.63771$
$[0, 0, 1, 3, -4]$
\(y^2+y=x^3+3x-4\)
6.2.0.a.1
$[(4, 8)]$
459.b1
459g1
459.b
459g
$1$
$1$
\( 3^{3} \cdot 17 \)
\( - 3^{3} \cdot 17 \)
$0$
$\mathsf{trivial}$
$\Q$
$\mathrm{SU}(2)$
$102$
$2$
$0$
$1$
$1$
$0$
$66$
$-0.436174$
$-242970624/17$
$1.34713$
$3.68808$
$[0, 0, 1, -39, -94]$
\(y^2+y=x^3-39x-94\)
102.2.0.?
$[]$
459.c1
459h1
459.c
459h
$1$
$1$
\( 3^{3} \cdot 17 \)
\( - 3^{9} \cdot 17 \)
$1$
$\mathsf{trivial}$
$\Q$
$\mathrm{SU}(2)$
$102$
$2$
$0$
$0.179911424$
$1$
$6$
$36$
$-0.260870$
$-27/17$
$0.99575$
$3.29192$
$[1, -1, 1, -2, 28]$
\(y^2+xy+y=x^3-x^2-2x+28\)
102.2.0.?
$[(-2, 5)]$
459.d1
459f1
459.d
459f
$2$
$3$
\( 3^{3} \cdot 17 \)
\( - 3^{9} \cdot 17 \)
$0$
$\Z/3\Z$
$\Q$
$\mathrm{SU}(2)$
$3$
3.8.0.1
3B.1.1
$102$
$16$
$0$
$1$
$1$
$2$
$54$
$-0.145938$
$-884736/17$
$0.94133$
$3.85267$
$[0, 0, 1, -54, 155]$
\(y^2+y=x^3-54x+155\)
3.8.0-3.a.1.2
, 102.16.0.?
$[]$
459.d2
459f2
459.d
459f
$2$
$3$
\( 3^{3} \cdot 17 \)
\( - 3^{11} \cdot 17^{3} \)
$0$
$\mathsf{trivial}$
$\Q$
$\mathrm{SU}(2)$
$3$
3.8.0.2
3B.1.2
$102$
$16$
$0$
$1$
$1$
$0$
$162$
$0.403368$
$6291456/4913$
$1.15047$
$4.52590$
$[0, 0, 1, 216, 722]$
\(y^2+y=x^3+216x+722\)
3.8.0-3.a.1.1
, 102.16.0.?
$[]$
459.e1
459c1
459.e
459c
$2$
$3$
\( 3^{3} \cdot 17 \)
\( - 3^{3} \cdot 17 \)
$0$
$\mathsf{trivial}$
$\Q$
$\mathrm{SU}(2)$
$3$
3.8.0.2
3B.1.2
$102$
$16$
$0$
$1$
$1$
$0$
$18$
$-0.695245$
$-884736/17$
$0.94133$
$2.77719$
$[0, 0, 1, -6, -6]$
\(y^2+y=x^3-6x-6\)
3.8.0-3.a.1.1
, 102.16.0.?
$[]$
459.e2
459c2
459.e
459c
$2$
$3$
\( 3^{3} \cdot 17 \)
\( - 3^{5} \cdot 17^{3} \)
$0$
$\Z/3\Z$
$\Q$
$\mathrm{SU}(2)$
$3$
3.8.0.1
3B.1.1
$102$
$16$
$0$
$1$
$1$
$2$
$54$
$-0.145938$
$6291456/4913$
$1.15047$
$3.45041$
$[0, 0, 1, 24, -27]$
\(y^2+y=x^3+24x-27\)
3.8.0-3.a.1.2
, 102.16.0.?
$[]$
459.f1
459a1
459.f
459a
$1$
$1$
\( 3^{3} \cdot 17 \)
\( - 3^{3} \cdot 17 \)
$1$
$\mathsf{trivial}$
$\Q$
$\mathrm{SU}(2)$
$102$
$2$
$0$
$0.898608312$
$1$
$2$
$12$
$-0.810176$
$-27/17$
$0.99575$
$2.21644$
$[1, -1, 0, 0, -1]$
\(y^2+xy=x^3-x^2-1\)
102.2.0.?
$[(2, 1)]$
459.g1
459d1
459.g
459d
$1$
$1$
\( 3^{3} \cdot 17 \)
\( - 3^{9} \cdot 17 \)
$0$
$\mathsf{trivial}$
$\Q$
$\mathrm{SU}(2)$
$102$
$2$
$0$
$1$
$1$
$0$
$198$
$0.113132$
$-242970624/17$
$1.34713$
$4.76356$
$[0, 0, 1, -351, 2531]$
\(y^2+y=x^3-351x+2531\)
102.2.0.?
$[]$
459.h1
459e1
459.h
459e
$1$
$1$
\( 3^{3} \cdot 17 \)
\( - 3^{9} \cdot 17^{2} \)
$0$
$\mathsf{trivial}$
$\Q$
$\mathrm{SU}(2)$
$6$
$2$
$0$
$1$
$1$
$0$
$180$
$-0.020133$
$110592/289$
$0.90890$
$3.71319$
$[0, 0, 1, 27, 101]$
\(y^2+y=x^3+27x+101\)
6.2.0.a.1
$[]$
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV