Learn more

Refine search


Results (28 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
5415.a1 5415.a \( 3 \cdot 5 \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $0.330320112$ $[0, -1, 1, -6, 2]$ \(y^2+y=x^3-x^2-6x+2\) 10.2.0.a.1
5415.b1 5415.b \( 3 \cdot 5 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.252432105$ $[0, -1, 1, -13116, 396722]$ \(y^2+y=x^3-x^2-13116x+396722\) 10.2.0.a.1
5415.c1 5415.c \( 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $2.199062716$ $[1, 0, 0, -33761, 2323110]$ \(y^2+xy=x^3-33761x+2323110\) 2.3.0.a.1, 60.6.0.c.1, 76.6.0.?, 1140.12.0.?
5415.c2 5415.c \( 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $4.398125433$ $[1, 0, 0, 534, 121371]$ \(y^2+xy=x^3+534x+121371\) 2.3.0.a.1, 30.6.0.a.1, 76.6.0.?, 1140.12.0.?
5415.d1 5415.d \( 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -30151, -1598794]$ \(y^2+xy=x^3-30151x-1598794\) 2.3.0.a.1, 20.6.0.e.1, 76.6.0.?, 380.12.0.?
5415.d2 5415.d \( 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 4144, -151545]$ \(y^2+xy=x^3+4144x-151545\) 2.3.0.a.1, 20.6.0.e.1, 76.6.0.?, 190.6.0.?, 380.12.0.?
5415.e1 5415.e \( 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -2168715, 1229095692]$ \(y^2+xy=x^3-2168715x+1229095692\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 10.6.0.a.1, 20.12.0.g.1, $\ldots$
5415.e2 5415.e \( 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -446745, -93110850]$ \(y^2+xy=x^3-446745x-93110850\) 2.3.0.a.1, 4.12.0-4.c.1.2, 40.24.0-40.z.1.5, 76.24.0.?, 760.48.0.?
5415.e3 5415.e \( 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -138090, 18437067]$ \(y^2+xy=x^3-138090x+18437067\) 2.6.0.a.1, 4.12.0-2.a.1.1, 20.24.0-20.b.1.3, 76.24.0.?, 380.48.0.?
5415.e4 5415.e \( 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/4\Z$ $1$ $[1, 0, 0, 8115, 1272600]$ \(y^2+xy=x^3+8115x+1272600\) 2.3.0.a.1, 4.12.0-4.c.1.1, 40.24.0-40.z.1.13, 152.24.0.?, 190.6.0.?, $\ldots$
5415.f1 5415.f \( 3 \cdot 5 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.739243991$ $[0, -1, 1, -17315, 882761]$ \(y^2+y=x^3-x^2-17315x+882761\) 3.4.0.a.1, 10.2.0.a.1, 30.8.0.a.1, 57.8.0-3.a.1.2, 570.16.0.?
5415.f2 5415.f \( 3 \cdot 5 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.246414663$ $[0, -1, 1, -215, 1256]$ \(y^2+y=x^3-x^2-215x+1256\) 3.4.0.a.1, 10.2.0.a.1, 30.8.0.a.1, 57.8.0-3.a.1.1, 570.16.0.?
5415.g1 5415.g \( 3 \cdot 5 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $7.238802236$ $[0, 1, 1, -6250835, -6017354656]$ \(y^2+y=x^3+x^2-6250835x-6017354656\) 3.8.0-3.a.1.1, 10.2.0.a.1, 30.16.0-30.a.1.1
5415.g2 5415.g \( 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/3\Z$ $2.412934078$ $[0, 1, 1, -77735, -8150461]$ \(y^2+y=x^3+x^2-77735x-8150461\) 3.8.0-3.a.1.2, 10.2.0.a.1, 30.16.0-30.a.1.4
5415.h1 5415.h \( 3 \cdot 5 \cdot 19^{2} \) $2$ $\Z/2\Z$ $2.885550076$ $[1, 1, 0, -27443, 75438]$ \(y^2+xy=x^3+x^2-27443x+75438\) 2.3.0.a.1, 60.6.0.c.1, 76.6.0.?, 1140.12.0.?
5415.h2 5415.h \( 3 \cdot 5 \cdot 19^{2} \) $2$ $\Z/2\Z$ $11.54220030$ $[1, 1, 0, 6852, 13707]$ \(y^2+xy=x^3+x^2+6852x+13707\) 2.3.0.a.1, 30.6.0.a.1, 76.6.0.?, 1140.12.0.?
5415.i1 5415.i \( 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $0.877265500$ $[1, 1, 0, -83, 198]$ \(y^2+xy=x^3+x^2-83x+198\) 2.3.0.a.1, 20.6.0.e.1, 76.6.0.?, 380.12.0.?
5415.i2 5415.i \( 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $1.754531001$ $[1, 1, 0, 12, 27]$ \(y^2+xy=x^3+x^2+12x+27\) 2.3.0.a.1, 20.6.0.e.1, 76.6.0.?, 190.6.0.?, 380.12.0.?
5415.j1 5415.j \( 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -779768, 264965501]$ \(y^2+xy+y=x^3-779768x+264965501\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 10.6.0.a.1, 16.48.0.x.2, $\ldots$
5415.j2 5415.j \( 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -48743, 4135781]$ \(y^2+xy+y=x^3-48743x+4135781\) 2.6.0.a.1, 4.12.0.b.1, 8.48.0.k.1, 20.24.0.c.1, 40.96.1.cc.2, $\ldots$
5415.j3 5415.j \( 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -39718, 5716961]$ \(y^2+xy+y=x^3-39718x+5716961\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.ba.2, 16.48.0.u.2, 20.12.0.h.1, $\ldots$
5415.j4 5415.j \( 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -28888, -1892197]$ \(y^2+xy+y=x^3-28888x-1892197\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 24.24.0.by.2, $\ldots$
5415.j5 5415.j \( 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -3618, 38431]$ \(y^2+xy+y=x^3-3618x+38431\) 2.6.0.a.1, 4.24.0.b.1, 8.48.0.b.2, 24.96.1.n.1, 40.96.1.s.1, $\ldots$
5415.j6 5415.j \( 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -1813, -29437]$ \(y^2+xy+y=x^3-1813x-29437\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.i.1, 16.48.0.d.2, 24.48.0.bb.2, $\ldots$
5415.j7 5415.j \( 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -8, -1279]$ \(y^2+xy+y=x^3-8x-1279\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 24.24.0.bz.1, $\ldots$
5415.j8 5415.j \( 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 12627, 291853]$ \(y^2+xy+y=x^3+12627x+291853\) 2.3.0.a.1, 4.12.0.d.1, 8.48.0.n.2, 24.96.1.cv.2, 76.24.0.?, $\ldots$
5415.k1 5415.k \( 3 \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -2286, -1969]$ \(y^2+y=x^3+x^2-2286x-1969\) 10.2.0.a.1
5415.l1 5415.l \( 3 \cdot 5 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $5.318672127$ $[0, 1, 1, -4734996, -2692708189]$ \(y^2+y=x^3+x^2-4734996x-2692708189\) 10.2.0.a.1
  displayed columns for results