Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
5415.a1 |
5415d1 |
5415.a |
5415d |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 19^{2} \) |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$0.330320112$ |
$1$ |
|
$18$ |
$720$ |
$-0.502553$ |
$77824/45$ |
$1.11940$ |
$1.99502$ |
$[0, -1, 1, -6, 2]$ |
\(y^2+y=x^3-x^2-6x+2\) |
10.2.0.a.1 |
$[(0, 1), (3, 1)]$ |
5415.b1 |
5415b1 |
5415.b |
5415b |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 19^{2} \) |
\( 3^{14} \cdot 5^{3} \cdot 19^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$1.252432105$ |
$1$ |
|
$4$ |
$21168$ |
$1.369852$ |
$1914902401024/597871125$ |
$1.06216$ |
$4.65962$ |
$[0, -1, 1, -13116, 396722]$ |
\(y^2+y=x^3-x^2-13116x+396722\) |
10.2.0.a.1 |
$[(138, 1093)]$ |
5415.c1 |
5415h2 |
5415.c |
5415h |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 19^{2} \) |
\( 3^{2} \cdot 5^{6} \cdot 19^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1140$ |
$12$ |
$0$ |
$2.199062716$ |
$1$ |
|
$4$ |
$17280$ |
$1.482559$ |
$90458382169/2671875$ |
$1.09032$ |
$4.98955$ |
$[1, 0, 0, -33761, 2323110]$ |
\(y^2+xy=x^3-33761x+2323110\) |
2.3.0.a.1, 60.6.0.c.1, 76.6.0.?, 1140.12.0.? |
$[(123, 126)]$ |
5415.c2 |
5415h1 |
5415.c |
5415h |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 19^{2} \) |
\( - 3 \cdot 5^{3} \cdot 19^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1140$ |
$12$ |
$0$ |
$4.398125433$ |
$1$ |
|
$3$ |
$8640$ |
$1.135986$ |
$357911/135375$ |
$0.95197$ |
$4.29637$ |
$[1, 0, 0, 534, 121371]$ |
\(y^2+xy=x^3+534x+121371\) |
2.3.0.a.1, 30.6.0.a.1, 76.6.0.?, 1140.12.0.? |
$[(-37, 245)]$ |
5415.d1 |
5415f2 |
5415.d |
5415f |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 19^{2} \) |
\( 3^{4} \cdot 5^{2} \cdot 19^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$24320$ |
$1.556835$ |
$9393931/2025$ |
$0.89098$ |
$4.95009$ |
$[1, 0, 0, -30151, -1598794]$ |
\(y^2+xy=x^3-30151x-1598794\) |
2.3.0.a.1, 20.6.0.e.1, 76.6.0.?, 380.12.0.? |
$[]$ |
5415.d2 |
5415f1 |
5415.d |
5415f |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 19^{2} \) |
\( - 3^{2} \cdot 5 \cdot 19^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$12160$ |
$1.210262$ |
$24389/45$ |
$0.82301$ |
$4.34864$ |
$[1, 0, 0, 4144, -151545]$ |
\(y^2+xy=x^3+4144x-151545\) |
2.3.0.a.1, 20.6.0.e.1, 76.6.0.?, 190.6.0.?, 380.12.0.? |
$[]$ |
5415.e1 |
5415l4 |
5415.e |
5415l |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 19^{2} \) |
\( 3^{2} \cdot 5^{3} \cdot 19^{10} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$760$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$103680$ |
$2.226357$ |
$23977812996389881/146611125$ |
$1.09826$ |
$6.44213$ |
$[1, 0, 0, -2168715, 1229095692]$ |
\(y^2+xy=x^3-2168715x+1229095692\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 10.6.0.a.1, 20.12.0.g.1, $\ldots$ |
$[]$ |
5415.e2 |
5415l3 |
5415.e |
5415l |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 19^{2} \) |
\( 3^{2} \cdot 5^{12} \cdot 19^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$760$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$103680$ |
$2.226357$ |
$209595169258201/41748046875$ |
$0.98100$ |
$5.89081$ |
$[1, 0, 0, -446745, -93110850]$ |
\(y^2+xy=x^3-446745x-93110850\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 40.24.0-40.z.1.5, 76.24.0.?, 760.48.0.? |
$[]$ |
5415.e3 |
5415l2 |
5415.e |
5415l |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 19^{2} \) |
\( 3^{4} \cdot 5^{6} \cdot 19^{8} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$380$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$51840$ |
$1.879786$ |
$6189976379881/456890625$ |
$0.95560$ |
$5.48110$ |
$[1, 0, 0, -138090, 18437067]$ |
\(y^2+xy=x^3-138090x+18437067\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 20.24.0-20.b.1.3, 76.24.0.?, 380.48.0.? |
$[]$ |
5415.e4 |
5415l1 |
5415.e |
5415l |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 19^{2} \) |
\( - 3^{8} \cdot 5^{3} \cdot 19^{7} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$760$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$25920$ |
$1.533211$ |
$1256216039/15582375$ |
$0.94875$ |
$4.84304$ |
$[1, 0, 0, 8115, 1272600]$ |
\(y^2+xy=x^3+8115x+1272600\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 40.24.0-40.z.1.13, 152.24.0.?, 190.6.0.?, $\ldots$ |
$[]$ |
5415.f1 |
5415e2 |
5415.f |
5415e |
$2$ |
$3$ |
\( 3 \cdot 5 \cdot 19^{2} \) |
\( 3^{2} \cdot 5 \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$570$ |
$16$ |
$0$ |
$0.739243991$ |
$1$ |
|
$2$ |
$3888$ |
$0.768552$ |
$1590409933520896/45$ |
$1.29281$ |
$4.75654$ |
$[0, -1, 1, -17315, 882761]$ |
\(y^2+y=x^3-x^2-17315x+882761\) |
3.4.0.a.1, 10.2.0.a.1, 30.8.0.a.1, 57.8.0-3.a.1.2, 570.16.0.? |
$[(77, 10)]$ |
5415.f2 |
5415e1 |
5415.f |
5415e |
$2$ |
$3$ |
\( 3 \cdot 5 \cdot 19^{2} \) |
\( 3^{6} \cdot 5^{3} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$570$ |
$16$ |
$0$ |
$0.246414663$ |
$1$ |
|
$6$ |
$1296$ |
$0.219246$ |
$3058794496/91125$ |
$0.98270$ |
$3.22559$ |
$[0, -1, 1, -215, 1256]$ |
\(y^2+y=x^3-x^2-215x+1256\) |
3.4.0.a.1, 10.2.0.a.1, 30.8.0.a.1, 57.8.0-3.a.1.1, 570.16.0.? |
$[(20, 67)]$ |
5415.g1 |
5415j2 |
5415.g |
5415j |
$2$ |
$3$ |
\( 3 \cdot 5 \cdot 19^{2} \) |
\( 3^{2} \cdot 5 \cdot 19^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$30$ |
$16$ |
$0$ |
$7.238802236$ |
$1$ |
|
$0$ |
$73872$ |
$2.240772$ |
$1590409933520896/45$ |
$1.29281$ |
$6.81154$ |
$[0, 1, 1, -6250835, -6017354656]$ |
\(y^2+y=x^3+x^2-6250835x-6017354656\) |
3.8.0-3.a.1.1, 10.2.0.a.1, 30.16.0-30.a.1.1 |
$[(-282987/14, -1219/14)]$ |
5415.g2 |
5415j1 |
5415.g |
5415j |
$2$ |
$3$ |
\( 3 \cdot 5 \cdot 19^{2} \) |
\( 3^{6} \cdot 5^{3} \cdot 19^{8} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$30$ |
$16$ |
$0$ |
$2.412934078$ |
$1$ |
|
$4$ |
$24624$ |
$1.691465$ |
$3058794496/91125$ |
$0.98270$ |
$5.28058$ |
$[0, 1, 1, -77735, -8150461]$ |
\(y^2+y=x^3+x^2-77735x-8150461\) |
3.8.0-3.a.1.2, 10.2.0.a.1, 30.16.0-30.a.1.4 |
$[(-149, 382)]$ |
5415.h1 |
5415c2 |
5415.h |
5415c |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 19^{2} \) |
\( 3^{10} \cdot 5^{2} \cdot 19^{7} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1140$ |
$12$ |
$0$ |
$2.885550076$ |
$1$ |
|
$10$ |
$28800$ |
$1.590862$ |
$48587168449/28048275$ |
$1.03180$ |
$4.91725$ |
$[1, 1, 0, -27443, 75438]$ |
\(y^2+xy=x^3+x^2-27443x+75438\) |
2.3.0.a.1, 60.6.0.c.1, 76.6.0.?, 1140.12.0.? |
$[(-2, 362), (-369/2, 11199/2)]$ |
5415.h2 |
5415c1 |
5415.h |
5415c |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 19^{2} \) |
\( - 3^{5} \cdot 5 \cdot 19^{8} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1140$ |
$12$ |
$0$ |
$11.54220030$ |
$1$ |
|
$5$ |
$14400$ |
$1.244289$ |
$756058031/438615$ |
$1.00322$ |
$4.43301$ |
$[1, 1, 0, 6852, 13707]$ |
\(y^2+xy=x^3+x^2+6852x+13707\) |
2.3.0.a.1, 30.6.0.a.1, 76.6.0.?, 1140.12.0.? |
$[(1442, 54151), (1198/3, 47299/3)]$ |
5415.i1 |
5415a2 |
5415.i |
5415a |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 19^{2} \) |
\( 3^{4} \cdot 5^{2} \cdot 19^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$0.877265500$ |
$1$ |
|
$4$ |
$1280$ |
$0.084616$ |
$9393931/2025$ |
$0.89098$ |
$2.89509$ |
$[1, 1, 0, -83, 198]$ |
\(y^2+xy=x^3+x^2-83x+198\) |
2.3.0.a.1, 20.6.0.e.1, 76.6.0.?, 380.12.0.? |
$[(-2, 20)]$ |
5415.i2 |
5415a1 |
5415.i |
5415a |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 19^{2} \) |
\( - 3^{2} \cdot 5 \cdot 19^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$1.754531001$ |
$1$ |
|
$3$ |
$640$ |
$-0.261958$ |
$24389/45$ |
$0.82301$ |
$2.29365$ |
$[1, 1, 0, 12, 27]$ |
\(y^2+xy=x^3+x^2+12x+27\) |
2.3.0.a.1, 20.6.0.e.1, 76.6.0.?, 190.6.0.?, 380.12.0.? |
$[(2, 7)]$ |
5415.j1 |
5415k7 |
5415.j |
5415k |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 19^{2} \) |
\( 3^{4} \cdot 5 \cdot 19^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.121 |
2B |
$9120$ |
$768$ |
$13$ |
$1$ |
$1$ |
|
$0$ |
$27648$ |
$1.763088$ |
$1114544804970241/405$ |
$1.07354$ |
$6.08518$ |
$[1, 0, 1, -779768, 264965501]$ |
\(y^2+xy+y=x^3-779768x+264965501\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 10.6.0.a.1, 16.48.0.x.2, $\ldots$ |
$[]$ |
5415.j2 |
5415k5 |
5415.j |
5415k |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 19^{2} \) |
\( 3^{8} \cdot 5^{2} \cdot 19^{6} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.123 |
2Cs |
$4560$ |
$768$ |
$13$ |
$1$ |
$1$ |
|
$2$ |
$13824$ |
$1.416515$ |
$272223782641/164025$ |
$1.03897$ |
$5.11770$ |
$[1, 0, 1, -48743, 4135781]$ |
\(y^2+xy+y=x^3-48743x+4135781\) |
2.6.0.a.1, 4.12.0.b.1, 8.48.0.k.1, 20.24.0.c.1, 40.96.1.cc.2, $\ldots$ |
$[]$ |
5415.j3 |
5415k8 |
5415.j |
5415k |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 19^{2} \) |
\( - 3^{16} \cdot 5 \cdot 19^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.134 |
2B |
$9120$ |
$768$ |
$13$ |
$1$ |
$1$ |
|
$0$ |
$27648$ |
$1.763088$ |
$-147281603041/215233605$ |
$1.05949$ |
$5.19281$ |
$[1, 0, 1, -39718, 5716961]$ |
\(y^2+xy+y=x^3-39718x+5716961\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.ba.2, 16.48.0.u.2, 20.12.0.h.1, $\ldots$ |
$[]$ |
5415.j4 |
5415k3 |
5415.j |
5415k |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 19^{2} \) |
\( 3 \cdot 5 \cdot 19^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.48.0.1 |
2B |
$9120$ |
$768$ |
$13$ |
$1$ |
$16$ |
$2$ |
$0$ |
$6912$ |
$1.069942$ |
$56667352321/15$ |
$1.03019$ |
$4.93515$ |
$[1, 0, 1, -28888, -1892197]$ |
\(y^2+xy+y=x^3-28888x-1892197\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 24.24.0.by.2, $\ldots$ |
$[]$ |
5415.j5 |
5415k4 |
5415.j |
5415k |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 19^{2} \) |
\( 3^{4} \cdot 5^{4} \cdot 19^{6} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.44 |
2Cs |
$4560$ |
$768$ |
$13$ |
$1$ |
$1$ |
|
$2$ |
$6912$ |
$1.069942$ |
$111284641/50625$ |
$1.02534$ |
$4.21014$ |
$[1, 0, 1, -3618, 38431]$ |
\(y^2+xy+y=x^3-3618x+38431\) |
2.6.0.a.1, 4.24.0.b.1, 8.48.0.b.2, 24.96.1.n.1, 40.96.1.s.1, $\ldots$ |
$[]$ |
5415.j6 |
5415k2 |
5415.j |
5415k |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 19^{2} \) |
\( 3^{2} \cdot 5^{2} \cdot 19^{6} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.3 |
2Cs |
$4560$ |
$768$ |
$13$ |
$1$ |
$4$ |
$2$ |
$2$ |
$3456$ |
$0.723369$ |
$13997521/225$ |
$0.96230$ |
$3.96898$ |
$[1, 0, 1, -1813, -29437]$ |
\(y^2+xy+y=x^3-1813x-29437\) |
2.6.0.a.1, 4.12.0.b.1, 8.24.0.i.1, 16.48.0.d.2, 24.48.0.bb.2, $\ldots$ |
$[]$ |
5415.j7 |
5415k1 |
5415.j |
5415k |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 19^{2} \) |
\( - 3 \cdot 5 \cdot 19^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.48.0.1 |
2B |
$9120$ |
$768$ |
$13$ |
$1$ |
$4$ |
$2$ |
$1$ |
$1728$ |
$0.376795$ |
$-1/15$ |
$1.19808$ |
$3.23714$ |
$[1, 0, 1, -8, -1279]$ |
\(y^2+xy+y=x^3-8x-1279\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 24.24.0.bz.1, $\ldots$ |
$[]$ |
5415.j8 |
5415k6 |
5415.j |
5415k |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 19^{2} \) |
\( - 3^{2} \cdot 5^{8} \cdot 19^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.197 |
2B |
$9120$ |
$768$ |
$13$ |
$1$ |
$1$ |
|
$0$ |
$13824$ |
$1.416515$ |
$4733169839/3515625$ |
$1.05585$ |
$4.64637$ |
$[1, 0, 1, 12627, 291853]$ |
\(y^2+xy+y=x^3+12627x+291853\) |
2.3.0.a.1, 4.12.0.d.1, 8.48.0.n.2, 24.96.1.cv.2, 76.24.0.?, $\ldots$ |
$[]$ |
5415.k1 |
5415g1 |
5415.k |
5415g |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 19^{2} \) |
\( 3^{2} \cdot 5 \cdot 19^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$13680$ |
$0.969666$ |
$77824/45$ |
$1.11940$ |
$4.05002$ |
$[0, 1, 1, -2286, -1969]$ |
\(y^2+y=x^3+x^2-2286x-1969\) |
10.2.0.a.1 |
$[]$ |
5415.l1 |
5415i1 |
5415.l |
5415i |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 19^{2} \) |
\( 3^{14} \cdot 5^{3} \cdot 19^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$5.318672127$ |
$1$ |
|
$0$ |
$402192$ |
$2.842072$ |
$1914902401024/597871125$ |
$1.06216$ |
$6.71462$ |
$[0, 1, 1, -4734996, -2692708189]$ |
\(y^2+y=x^3+x^2-4734996x-2692708189\) |
10.2.0.a.1 |
$[(-6819/2, 165479/2)]$ |