Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
5547.a1 |
5547c1 |
5547.a |
5547c |
$1$ |
$1$ |
\( 3 \cdot 43^{2} \) |
\( - 3^{3} \cdot 43^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$37926$ |
$1.511206$ |
$-176128/27$ |
$0.84680$ |
$4.91863$ |
$[0, 1, 1, -26502, 1858844]$ |
\(y^2+y=x^3+x^2-26502x+1858844\) |
6.2.0.a.1 |
$[]$ |
5547.b1 |
5547a3 |
5547.b |
5547a |
$4$ |
$4$ |
\( 3 \cdot 43^{2} \) |
\( 3^{12} \cdot 43^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$1032$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$55440$ |
$2.097427$ |
$1616855892553/22851963$ |
$1.05806$ |
$5.87851$ |
$[1, 1, 1, -452119, -115761838]$ |
\(y^2+xy+y=x^3+x^2-452119x-115761838\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 24.24.0-24.z.1.1, 172.24.0.?, 1032.48.0.? |
$[]$ |
5547.b2 |
5547a2 |
5547.b |
5547a |
$4$ |
$4$ |
\( 3 \cdot 43^{2} \) |
\( 3^{6} \cdot 43^{8} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$516$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$27720$ |
$1.750853$ |
$2845178713/1347921$ |
$0.95310$ |
$5.14279$ |
$[1, 1, 1, -54584, 2067536]$ |
\(y^2+xy+y=x^3+x^2-54584x+2067536\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 12.24.0-12.b.1.3, 172.24.0.?, 516.48.0.? |
$[]$ |
5547.b3 |
5547a1 |
5547.b |
5547a |
$4$ |
$4$ |
\( 3 \cdot 43^{2} \) |
\( 3^{3} \cdot 43^{7} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$1032$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$13860$ |
$1.404280$ |
$1630532233/1161$ |
$0.91317$ |
$5.07822$ |
$[1, 1, 1, -45339, 3694656]$ |
\(y^2+xy+y=x^3+x^2-45339x+3694656\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 24.24.0-24.z.1.9, 258.6.0.?, 344.24.0.?, $\ldots$ |
$[]$ |
5547.b4 |
5547a4 |
5547.b |
5547a |
$4$ |
$4$ |
\( 3 \cdot 43^{2} \) |
\( - 3^{3} \cdot 43^{10} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$1032$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$55440$ |
$2.097427$ |
$129784785047/92307627$ |
$0.98681$ |
$5.58593$ |
$[1, 1, 1, 195031, 15946130]$ |
\(y^2+xy+y=x^3+x^2+195031x+15946130\) |
2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.12.0-4.c.1.5, 12.12.0.g.1, $\ldots$ |
$[]$ |
5547.c1 |
5547d1 |
5547.c |
5547d |
$1$ |
$1$ |
\( 3 \cdot 43^{2} \) |
\( - 3^{4} \cdot 43^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$86$ |
$2$ |
$0$ |
$1.614896306$ |
$1$ |
|
$2$ |
$14784$ |
$1.413486$ |
$-799178752/3483$ |
$0.95634$ |
$4.99637$ |
$[0, 1, 1, -35747, -2623132]$ |
\(y^2+y=x^3+x^2-35747x-2623132\) |
86.2.0.? |
$[(444, 8320)]$ |
5547.d1 |
5547b1 |
5547.d |
5547b |
$1$ |
$1$ |
\( 3 \cdot 43^{2} \) |
\( - 3^{3} \cdot 43^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$882$ |
$-0.369394$ |
$-176128/27$ |
$0.84680$ |
$2.30093$ |
$[0, -1, 1, -14, -19]$ |
\(y^2+y=x^3-x^2-14x-19\) |
6.2.0.a.1 |
$[]$ |