Learn more

Refine search


Results (12 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
588.a1 588.a \( 2^{2} \cdot 3 \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 131, -167]$ \(y^2=x^3-x^2+131x-167\) 6.2.0.a.1
588.b1 588.b \( 2^{2} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.207775952$ $[0, -1, 0, -44, 120]$ \(y^2=x^3-x^2-44x+120\) 2.3.0.a.1, 12.6.0.g.1, 28.6.0.a.1, 84.12.0.?
588.b2 588.b \( 2^{2} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.415551904$ $[0, -1, 0, -9, -6]$ \(y^2=x^3-x^2-9x-6\) 2.3.0.a.1, 12.6.0.g.1, 28.6.0.b.1, 42.6.0.a.1, 84.12.0.?
588.c1 588.c \( 2^{2} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.998952810$ $[0, -1, 0, -89588, 10350936]$ \(y^2=x^3-x^2-89588x+10350936\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.48.0-12.j.1.7, 21.8.0-3.a.1.2, $\ldots$
588.c2 588.c \( 2^{2} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $1.997905620$ $[0, -1, 0, -5553, 165894]$ \(y^2=x^3-x^2-5553x+165894\) 2.3.0.a.1, 3.4.0.a.1, 6.24.0.b.1, 12.48.0-6.b.1.5, 21.8.0-3.a.1.2, $\ldots$
588.c3 588.c \( 2^{2} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.332984270$ $[0, -1, 0, -1388, 6840]$ \(y^2=x^3-x^2-1388x+6840\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.48.0-12.j.1.5, 21.8.0-3.a.1.1, $\ldots$
588.c4 588.c \( 2^{2} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.665968540$ $[0, -1, 0, 327, 666]$ \(y^2=x^3-x^2+327x+666\) 2.3.0.a.1, 3.4.0.a.1, 6.24.0.b.1, 12.48.0-6.b.1.2, 21.8.0-3.a.1.1, $\ldots$
588.d1 588.d \( 2^{2} \cdot 3 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -1780, 28244]$ \(y^2=x^3+x^2-1780x+28244\) 2.3.0.a.1, 12.6.0.c.1, 28.6.0.a.1, 84.12.0.?
588.d2 588.d \( 2^{2} \cdot 3 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -65, 804]$ \(y^2=x^3+x^2-65x+804\) 2.3.0.a.1, 6.6.0.a.1, 28.6.0.b.1, 84.12.0.?
588.e1 588.e \( 2^{2} \cdot 3 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -2172, -36828]$ \(y^2=x^3+x^2-2172x-36828\) 2.3.0.a.1, 12.6.0.g.1, 28.6.0.a.1, 84.12.0.?
588.e2 588.e \( 2^{2} \cdot 3 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -457, 2960]$ \(y^2=x^3+x^2-457x+2960\) 2.3.0.a.1, 12.6.0.g.1, 28.6.0.b.1, 42.6.0.a.1, 84.12.0.?
588.f1 588.f \( 2^{2} \cdot 3 \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 6403, 44463]$ \(y^2=x^3+x^2+6403x+44463\) 6.2.0.a.1
  displayed columns for results