Learn more

Refine search


Results (1-50 of 109 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
60840.a1 60840.a \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -329043, 72602062]$ \(y^2=x^3-329043x+72602062\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.y.1, 40.12.0.v.1, 104.12.0.?, $\ldots$
60840.a2 60840.a \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -207363, -35912162]$ \(y^2=x^3-207363x-35912162\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.s.1, 40.12.0.bb.1, 52.12.0-4.c.1.1, $\ldots$
60840.a3 60840.a \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -24843, 628342]$ \(y^2=x^3-24843x+628342\) 2.6.0.a.1, 24.12.0.b.1, 40.12.0.a.1, 52.12.0-2.a.1.1, 60.12.0.b.1, $\ldots$
60840.a4 60840.a \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 5577, 74698]$ \(y^2=x^3+5577x+74698\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.y.1, 30.6.0.a.1, 40.12.0.bb.1, $\ldots$
60840.b1 60840.b \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $2.514513860$ $[0, 0, 0, -85683, -9625057]$ \(y^2=x^3-85683x-9625057\) 2.2.0.a.1, 26.6.0.a.1, 60.4.0-2.a.1.1, 780.12.0.?
60840.c1 60840.c \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -85683, 49753262]$ \(y^2=x^3-85683x+49753262\) 40.2.0.a.1
60840.d1 60840.d \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $0.186552240$ $[0, 0, 0, -2028, 457652]$ \(y^2=x^3-2028x+457652\) 6.2.0.a.1
60840.e1 60840.e \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -9243, -339417]$ \(y^2=x^3-9243x-339417\) 2.2.0.a.1, 26.6.0.a.1, 156.12.0.?
60840.f1 60840.f \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.270438730$ $[0, 0, 0, -2028, 79092]$ \(y^2=x^3-2028x+79092\) 390.2.0.?
60840.g1 60840.g \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -57498363, 165778690662]$ \(y^2=x^3-57498363x+165778690662\) 2.3.0.a.1, 12.6.0.a.1, 52.6.0.e.1, 156.12.0.?
60840.g2 60840.g \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -460863, 6952068162]$ \(y^2=x^3-460863x+6952068162\) 2.3.0.a.1, 12.6.0.b.1, 52.6.0.e.1, 78.6.0.?, 156.12.0.?
60840.h1 60840.h \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $2$ $\Z/2\Z$ $0.869985532$ $[0, 0, 0, -858, 8957]$ \(y^2=x^3-858x+8957\) 2.3.0.a.1, 12.6.0.f.1, 26.6.0.b.1, 156.12.0.?
60840.h2 60840.h \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $2$ $\Z/2\Z$ $0.869985532$ $[0, 0, 0, 897, 40898]$ \(y^2=x^3+897x+40898\) 2.3.0.a.1, 12.6.0.f.1, 52.6.0.c.1, 78.6.0.?, 156.12.0.?
60840.i1 60840.i \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -1443, 33982]$ \(y^2=x^3-1443x+33982\) 120.2.0.?
60840.j1 60840.j \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -187083, 30964518]$ \(y^2=x^3-187083x+30964518\) 2.3.0.a.1, 24.6.0.a.1, 40.6.0.e.1, 60.6.0.c.1, 120.12.0.?
60840.j2 60840.j \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -4563, 1067742]$ \(y^2=x^3-4563x+1067742\) 2.3.0.a.1, 24.6.0.d.1, 30.6.0.a.1, 40.6.0.e.1, 120.12.0.?
60840.k1 60840.k \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.591840845$ $[0, 0, 0, -6511908, 6397321268]$ \(y^2=x^3-6511908x+6397321268\) 6.2.0.a.1
60840.l1 60840.l \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1443, -16562]$ \(y^2=x^3-1443x-16562\) 2.3.0.a.1, 40.6.0.e.1, 104.6.0.?, 130.6.0.?, 520.12.0.?
60840.l2 60840.l \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 3237, -101738]$ \(y^2=x^3+3237x-101738\) 2.3.0.a.1, 40.6.0.e.1, 104.6.0.?, 260.6.0.?, 520.12.0.?
60840.m1 60840.m \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -856323, 304781022]$ \(y^2=x^3-856323x+304781022\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0.y.1, 104.12.0.?, $\ldots$
60840.m2 60840.m \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -65403, 2491398]$ \(y^2=x^3-65403x+2491398\) 2.6.0.a.1, 12.12.0-2.a.1.1, 40.12.0.b.1, 104.12.0.?, 120.24.0.?, $\ldots$
60840.m3 60840.m \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -34983, -2491398]$ \(y^2=x^3-34983x-2491398\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0.y.1, 104.12.0.?, $\ldots$
60840.m4 60840.m \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 238797, 19100718]$ \(y^2=x^3+238797x+19100718\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0.s.1, 104.12.0.?, $\ldots$
60840.n1 60840.n \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -105963, -13256698]$ \(y^2=x^3-105963x-13256698\) 2.3.0.a.1, 120.6.0.?, 156.6.0.?, 520.6.0.?, 1560.12.0.?
60840.n2 60840.n \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -4563, -338338]$ \(y^2=x^3-4563x-338338\) 2.3.0.a.1, 78.6.0.?, 120.6.0.?, 520.6.0.?, 1560.12.0.?
60840.o1 60840.o \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -15052323, 10700985022]$ \(y^2=x^3-15052323x+10700985022\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0.v.1, 104.12.0.?, $\ldots$
60840.o2 60840.o \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -7447323, -7707677978]$ \(y^2=x^3-7447323x-7707677978\) 2.6.0.a.1, 12.12.0-2.a.1.1, 40.12.0.a.1, 104.12.0.?, 120.24.0.?, $\ldots$
60840.o3 60840.o \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -7416903, -7774668902]$ \(y^2=x^3-7416903x-7774668902\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0.bb.1, 104.12.0.?, $\ldots$
60840.o4 60840.o \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -329043, -21828921842]$ \(y^2=x^3-329043x-21828921842\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0.bb.1, 104.12.0.?, $\ldots$
60840.p1 60840.p \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $9.002580668$ $[0, 0, 0, -11706123, -15378723178]$ \(y^2=x^3-11706123x-15378723178\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.1, 12.12.0-4.c.1.2, 24.24.0-24.z.1.13, $\ldots$
60840.p2 60840.p \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $2.250645167$ $[0, 0, 0, -10915203, 13828212398]$ \(y^2=x^3-10915203x+13828212398\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.1, 12.12.0-4.c.1.1, 24.24.0-24.z.1.5, $\ldots$
60840.p3 60840.p \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.501290334$ $[0, 0, 0, -1028703, -26728702]$ \(y^2=x^3-1028703x-26728702\) 2.6.0.a.1, 4.12.0-2.a.1.2, 12.24.0-12.b.1.4, 52.24.0-52.b.1.4, 156.48.0.?
60840.p4 60840.p \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $2.250645167$ $[0, 0, 0, 256542, -3337243]$ \(y^2=x^3+256542x-3337243\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.12.0-4.c.1.1, 12.12.0.g.1, $\ldots$
60840.q1 60840.q \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -8846643, -10124641618]$ \(y^2=x^3-8846643x-10124641618\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0-4.c.1.6, 52.12.0-4.c.1.1, $\ldots$
60840.q2 60840.q \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -4587843, 3705385502]$ \(y^2=x^3-4587843x+3705385502\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0-4.c.1.6, 104.12.0.?, $\ldots$
60840.q3 60840.q \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -633243, -109221658]$ \(y^2=x^3-633243x-109221658\) 2.6.0.a.1, 12.12.0-2.a.1.1, 40.12.0-2.a.1.2, 52.12.0-2.a.1.1, 120.24.0.?, $\ldots$
60840.q4 60840.q \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 127257, -12333958]$ \(y^2=x^3+127257x-12333958\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0-4.c.1.6, 52.12.0-4.c.1.2, $\ldots$
60840.r1 60840.r \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 14782092, -14395262492]$ \(y^2=x^3+14782092x-14395262492\) 390.2.0.?
60840.s1 60840.s \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -1443, 79742]$ \(y^2=x^3-1443x+79742\) 40.2.0.a.1
60840.t1 60840.t \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $16.40637683$ $[0, 0, 0, -88569858, -285543252943]$ \(y^2=x^3-88569858x-285543252943\) 2.3.0.a.1, 12.6.0.f.1, 26.6.0.b.1, 156.12.0.?
60840.t2 60840.t \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $32.81275367$ $[0, 0, 0, 127647897, -1462157032102]$ \(y^2=x^3+127647897x-1462157032102\) 2.3.0.a.1, 12.6.0.f.1, 52.6.0.c.1, 78.6.0.?, 156.12.0.?
60840.u1 60840.u \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 281892, 1495620932]$ \(y^2=x^3+281892x+1495620932\) 390.2.0.?
60840.v1 60840.v \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $5.495059099$ $[0, 0, 0, -85683, -371293]$ \(y^2=x^3-85683x-371293\) 2.2.0.a.1, 26.6.0.a.1, 780.12.0.?
60840.w1 60840.w \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -3783, -89557]$ \(y^2=x^3-3783x-89557\) 2.2.0.a.1, 26.6.0.a.1, 780.12.0.?
60840.x1 60840.x \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -2557308, 1587648868]$ \(y^2=x^3-2557308x+1587648868\) 390.2.0.?
60840.y1 60840.y \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -614523, 185268278]$ \(y^2=x^3-614523x+185268278\) 2.3.0.a.1, 120.6.0.?, 156.6.0.?, 520.6.0.?, 1560.12.0.?
60840.y2 60840.y \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -29523, 4269278]$ \(y^2=x^3-29523x+4269278\) 2.3.0.a.1, 78.6.0.?, 120.6.0.?, 520.6.0.?, 1560.12.0.?
60840.z1 60840.z \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -2519283, 1533273118]$ \(y^2=x^3-2519283x+1533273118\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.1, 12.12.0.h.1, 24.24.0-12.h.1.4, $\ldots$
60840.z2 60840.z \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -237783, -3088982]$ \(y^2=x^3-237783x-3088982\) 2.6.0.a.1, 4.12.0-2.a.1.2, 12.24.0-12.a.1.4, 52.24.0-52.b.1.4, 156.48.0.?
60840.z3 60840.z \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -169338, -26757263]$ \(y^2=x^3-169338x-26757263\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.1, 12.12.0-4.c.1.2, 24.24.0-24.ba.1.13, $\ldots$
Next   displayed columns for results