⌂
→
Elliptic curves
→
$\Q$
→
65
Citation
·
Feedback
·
Hide Menu
Elliptic curves over $\Q$ of conductor 65
Introduction
Overview
Random
Universe
Knowledge
L-functions
Rational
All
Modular forms
Classical
Maass
Hilbert
Bianchi
Varieties
Elliptic curves over $\Q$
Elliptic curves over $\Q(\alpha)$
Genus 2 curves over $\Q$
Higher genus families
Abelian varieties over $\F_{q}$
Fields
Number fields
$p$-adic fields
Representations
Dirichlet characters
Artin representations
Groups
Galois groups
Sato-Tate groups
Database
↑
Learn more
Source and acknowledgments
Completeness of the data
Reliability of the data
Elliptic curve labels
Congruent number curves
Stein-Watkins dataset
BHKSSW dataset
Refine search
Advanced search options
Conductor
prime
p-power
sq-free
divides
multiple of
Discriminant
j-invariant
Rank
Bad$\ p$
include
exclude
exactly
subset
Curves per isogeny class
Complex multiplication
Torsion
all
one
no potential CM
potential CM
CM field Q(sqrt(-1))
CM field Q(sqrt(-3))
CM field Q(sqrt(-7))
CM discriminant -3
CM discriminant -4
CM discriminant -7
CM discriminant -8
CM discriminant -11
CM discriminant -12
CM discriminant -16
CM discriminant -19
CM discriminant -27
CM discriminant -28
CM discriminant -43
CM discriminant -67
CM discriminant -163
trivial
order 4
order 8
order 12
ℤ/2ℤ
ℤ/3ℤ
ℤ/4ℤ
ℤ/5ℤ
ℤ/6ℤ
ℤ/7ℤ
ℤ/8ℤ
ℤ/9ℤ
ℤ/10ℤ
ℤ/12ℤ
ℤ/2ℤ⊕ℤ/2ℤ
ℤ/2ℤ⊕ℤ/4ℤ
ℤ/2ℤ⊕ℤ/6ℤ
ℤ/2ℤ⊕ℤ/8ℤ
Isogeny class degree
Cyclic isogeny degree
Isogeny class size
Integral points
Analytic order of Ш
$p\ $div$\ $|Ш|
include
exclude
exactly
subset
Regulator
Reduction
Faltings height
semistable
not semistable
potentially good
not potentially good
Galois image
Adelic level
Adelic index
Adelic genus
Nonmax$\ \ell$
include
exclude
exactly
subset
$abc$ quality
Szpiro ratio
Sort order
Select
Search again
Random curve
▲ conductor
rank
torsion
CM discriminant
regulator
analytic Ш
isogeny class size
isogeny class degree
integral points
modular degree
adelic level
adelic index
adelic genus
Faltings height
$abc$ quality
Szpiro ratio
columns to display
✓ LMFDB curve label
Cremona curve label
✓ LMFDB class label
Cremona class label
class size
class degree
✓ conductor
discriminant
✓ rank
✓ torsion
Qbar-end algebra
✓ CM discriminant
Sato-Tate group
semistable
potentially good
nonmaximal primes
ℓ-adic images
mod-ℓ images
adelic level
adelic index
adelic genus
regulator
analytic Ш
ш primes
integral points
modular degree
Faltings height
j-invariant
abc quality
szpiro ratio
Weierstrass coeffs
✓ Weierstrass equation
mod-m images
mw-generators
show all
Results (displaying both matches)
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
Label
Cremona label
Class
Cremona class
Class size
Class degree
Conductor
Discriminant
Rank
Torsion
$\textrm{End}^0(E_{\overline\Q})$
CM
Sato-Tate
Semistable
Potentially good
Nonmax $\ell$
$\ell$-adic images
mod-$\ell$ images
Adelic level
Adelic index
Adelic genus
Regulator
$Ш_{\textrm{an}}$
Ш primes
Integral points
Modular degree
Faltings height
j-invariant
$abc$ quality
Szpiro ratio
Weierstrass coefficients
Weierstrass equation
mod-$m$ images
MW-generators
65.a1
65a1
65.a
65a
$2$
$2$
\( 5 \cdot 13 \)
\( 5 \cdot 13 \)
$1$
$\Z/2\Z$
$\Q$
$\mathrm{SU}(2)$
✓
$2$
8.12.0.22
2B
$520$
$48$
$0$
$0.375514098$
$1$
$7$
$2$
$-0.961616$
$117649/65$
$0.95681$
$2.79693$
$[1, 0, 0, -1, 0]$
\(y^2+xy=x^3-x\)
2.3.0.a.1
,
4.6.0.b.1
,
8.12.0-4.b.1.2
, 130.6.0.?, 260.24.0.?, $\ldots$
$[(1, 0)]$
65.a2
65a2
65.a
65a
$2$
$2$
\( 5 \cdot 13 \)
\( - 5^{2} \cdot 13^{2} \)
$1$
$\Z/2\Z$
$\Q$
$\mathrm{SU}(2)$
✓
$2$
8.12.0.37
2B
$520$
$48$
$0$
$0.187757049$
$1$
$12$
$4$
$-0.615042$
$6967871/4225$
$0.89914$
$3.77464$
$[1, 0, 0, 4, 1]$
\(y^2+xy=x^3+4x+1\)
2.3.0.a.1
,
4.6.0.a.1
,
8.12.0-4.a.1.1
, 260.12.0.?, 520.48.0.?
$[(1, 2)]$
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV