Learn more

Refine search


Results (1-50 of 56 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
6552.a1 6552.a \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $2$ $\Z/2\Z$ $0.592230367$ $[0, 0, 0, -1902, 31925]$ \(y^2=x^3-1902x+31925\) 2.3.0.a.1, 12.6.0.c.1, 26.6.0.b.1, 156.12.0.?
6552.a2 6552.a \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $2$ $\Z/2\Z$ $0.148057591$ $[0, 0, 0, -1767, 36650]$ \(y^2=x^3-1767x+36650\) 2.3.0.a.1, 6.6.0.a.1, 52.6.0.c.1, 156.12.0.?
6552.b1 6552.b \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $2.102683177$ $[0, 0, 0, -87, -310]$ \(y^2=x^3-87x-310\) 2.3.0.a.1, 12.6.0.c.1, 364.6.0.?, 546.6.0.?, 1092.12.0.?
6552.b2 6552.b \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $1.051341588$ $[0, 0, 0, -27, -730]$ \(y^2=x^3-27x-730\) 2.3.0.a.1, 6.6.0.a.1, 364.6.0.?, 1092.12.0.?
6552.c1 6552.c \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 9636, -239164]$ \(y^2=x^3+9636x-239164\) 182.2.0.?
6552.d1 6552.d \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $3.744772647$ $[0, 0, 0, -699, -7114]$ \(y^2=x^3-699x-7114\) 2184.2.0.?
6552.e1 6552.e \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $0.951854218$ $[0, 0, 0, -122331, 16468454]$ \(y^2=x^3-122331x+16468454\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 12.12.0-4.c.1.1, 24.24.0-24.z.1.12, $\ldots$
6552.e2 6552.e \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $3.807416873$ $[0, 0, 0, -14691, -285010]$ \(y^2=x^3-14691x-285010\) 2.3.0.a.1, 4.12.0-4.c.1.2, 24.24.0-24.z.1.16, 104.24.0.?, 156.24.0.?, $\ldots$
6552.e3 6552.e \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.903708436$ $[0, 0, 0, -7671, 255530]$ \(y^2=x^3-7671x+255530\) 2.6.0.a.1, 4.12.0-2.a.1.1, 12.24.0-12.b.1.1, 52.24.0-52.b.1.3, 156.48.0.?
6552.e4 6552.e \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/4\Z$ $0.951854218$ $[0, 0, 0, -66, 10649]$ \(y^2=x^3-66x+10649\) 2.3.0.a.1, 4.12.0-4.c.1.1, 6.6.0.a.1, 12.24.0-12.g.1.2, 104.24.0.?, $\ldots$
6552.f1 6552.f \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $2.844429468$ $[0, 0, 0, -487731, 19955374]$ \(y^2=x^3-487731x+19955374\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.2, 52.12.0-4.c.1.1, 56.12.0.bb.1, $\ldots$
6552.f2 6552.f \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.422214734$ $[0, 0, 0, -361371, 83463910]$ \(y^2=x^3-361371x+83463910\) 2.6.0.a.1, 24.12.0-2.a.1.1, 52.12.0-2.a.1.1, 56.12.0.a.1, 84.12.0.?, $\ldots$
6552.f3 6552.f \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $0.711107367$ $[0, 0, 0, -361191, 83551354]$ \(y^2=x^3-361191x+83551354\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.6, 52.12.0-4.c.1.2, 56.12.0.bb.1, $\ldots$
6552.f4 6552.f \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $2.844429468$ $[0, 0, 0, -237891, 141376030]$ \(y^2=x^3-237891x+141376030\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.1, 56.12.0.v.1, 84.12.0.?, $\ldots$
6552.g1 6552.g \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -57966, -5371655]$ \(y^2=x^3-57966x-5371655\) 2.3.0.a.1, 12.6.0.c.1, 28.6.0.d.1, 42.6.0.a.1, 84.12.0.?
6552.g2 6552.g \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -57951, -5374574]$ \(y^2=x^3-57951x-5374574\) 2.3.0.a.1, 6.6.0.a.1, 28.6.0.d.1, 84.12.0.?
6552.h1 6552.h \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -8571, 302006]$ \(y^2=x^3-8571x+302006\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.1, 28.12.0-4.c.1.1, 104.12.0.?, $\ldots$
6552.h2 6552.h \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -1011, -4930]$ \(y^2=x^3-1011x-4930\) 2.6.0.a.1, 24.12.0-2.a.1.1, 28.12.0-2.a.1.1, 104.12.0.?, 156.12.0.?, $\ldots$
6552.h3 6552.h \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -831, -9214]$ \(y^2=x^3-831x-9214\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.6, 28.12.0-4.c.1.2, 104.12.0.?, $\ldots$
6552.h4 6552.h \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 3669, -37690]$ \(y^2=x^3+3669x-37690\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.2, 56.12.0-4.c.1.5, 104.12.0.?, $\ldots$
6552.i1 6552.i \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $2.627908163$ $[0, 0, 0, 76437, 10132614]$ \(y^2=x^3+76437x+10132614\) 2184.2.0.?
6552.j1 6552.j \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -3, -2914]$ \(y^2=x^3-3x-2914\) 2184.2.0.?
6552.k1 6552.k \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $1.321644755$ $[0, 0, 0, -1830, -29923]$ \(y^2=x^3-1830x-29923\) 2.3.0.a.1, 12.6.0.c.1, 26.6.0.b.1, 156.12.0.?
6552.k2 6552.k \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $0.660822377$ $[0, 0, 0, -615, -69046]$ \(y^2=x^3-615x-69046\) 2.3.0.a.1, 6.6.0.a.1, 52.6.0.c.1, 156.12.0.?
6552.l1 6552.l \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -24015, 857698]$ \(y^2=x^3-24015x+857698\) 2.3.0.a.1, 12.6.0.c.1, 26.6.0.b.1, 156.12.0.?
6552.l2 6552.l \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 4650, 95209]$ \(y^2=x^3+4650x+95209\) 2.3.0.a.1, 6.6.0.a.1, 52.6.0.c.1, 156.12.0.?
6552.m1 6552.m \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -75, 614]$ \(y^2=x^3-75x+614\) 728.2.0.?
6552.n1 6552.n \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -13095, -576774]$ \(y^2=x^3-13095x-576774\) 2.3.0.a.1, 12.6.0.c.1, 364.6.0.?, 546.6.0.?, 1092.12.0.?
6552.n2 6552.n \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -810, -9207]$ \(y^2=x^3-810x-9207\) 2.3.0.a.1, 6.6.0.a.1, 364.6.0.?, 1092.12.0.?
6552.o1 6552.o \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $0.847316479$ $[0, 0, 0, -1455, 21362]$ \(y^2=x^3-1455x+21362\) 2.3.0.a.1, 12.6.0.c.1, 364.6.0.?, 546.6.0.?, 1092.12.0.?
6552.o2 6552.o \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $0.423658239$ $[0, 0, 0, -90, 341]$ \(y^2=x^3-90x+341\) 2.3.0.a.1, 6.6.0.a.1, 364.6.0.?, 1092.12.0.?
6552.p1 6552.p \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1497495, -705335654]$ \(y^2=x^3-1497495x-705335654\) 2.3.0.a.1, 12.6.0.c.1, 26.6.0.b.1, 156.12.0.?
6552.p2 6552.p \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -92910, -11189747]$ \(y^2=x^3-92910x-11189747\) 2.3.0.a.1, 6.6.0.a.1, 52.6.0.c.1, 156.12.0.?
6552.q1 6552.q \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.123835022$ $[0, 0, 0, -612, 6372]$ \(y^2=x^3-612x+6372\) 182.2.0.?
6552.r1 6552.r \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 8493, -375282]$ \(y^2=x^3+8493x-375282\) 2184.2.0.?
6552.s1 6552.s \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.252528005$ $[0, 0, 0, -12, -1388]$ \(y^2=x^3-12x-1388\) 182.2.0.?
6552.t1 6552.t \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $0.992574431$ $[0, 0, 0, -521694, 145034685]$ \(y^2=x^3-521694x+145034685\) 2.3.0.a.1, 12.6.0.c.1, 28.6.0.d.1, 42.6.0.a.1, 84.12.0.?
6552.t2 6552.t \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $0.496287215$ $[0, 0, 0, -521559, 145113498]$ \(y^2=x^3-521559x+145113498\) 2.3.0.a.1, 6.6.0.a.1, 28.6.0.d.1, 84.12.0.?
6552.u1 6552.u \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1362819, 612357982]$ \(y^2=x^3-1362819x+612357982\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 12.12.0-4.c.1.1, 16.24.0-8.n.1.2, $\ldots$
6552.u2 6552.u \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -85179, 9567430]$ \(y^2=x^3-85179x+9567430\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0-4.b.1.10, 12.24.0-4.b.1.1, 24.48.0-24.i.2.10, $\ldots$
6552.u3 6552.u \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -77619, 11334958]$ \(y^2=x^3-77619x+11334958\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.5, 12.12.0-4.c.1.1, 24.48.0-24.bz.1.15, $\ldots$
6552.u4 6552.u \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -5799, 121210]$ \(y^2=x^3-5799x+121210\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0-4.b.1.8, 12.24.0-4.b.1.3, 24.48.0-24.i.1.4, $\ldots$
6552.u5 6552.u \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -2154, -36983]$ \(y^2=x^3-2154x-36983\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 12.12.0-4.c.1.2, 16.24.0-8.n.1.4, $\ldots$
6552.u6 6552.u \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 15261, 799342]$ \(y^2=x^3+15261x+799342\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.3, 12.12.0-4.c.1.2, 24.48.0-24.bz.2.7, $\ldots$
6552.v1 6552.v \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -25474179, 49487829662]$ \(y^2=x^3-25474179x+49487829662\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 12.12.0-4.c.1.1, 16.24.0-8.n.1.8, $\ldots$
6552.v2 6552.v \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -1592139, 773244470]$ \(y^2=x^3-1592139x+773244470\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0-4.b.1.5, 12.24.0-4.b.1.1, 24.48.0-24.m.1.5, $\ldots$
6552.v3 6552.v \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1559379, 806587598]$ \(y^2=x^3-1559379x+806587598\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 12.12.0-4.c.1.1, 16.24.0-8.n.1.8, $\ldots$
6552.v4 6552.v \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -339699, -62789218]$ \(y^2=x^3-339699x-62789218\) 2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.n.1.10, 12.24.0-12.h.1.1, 24.48.0-24.bl.1.11, $\ldots$
6552.v5 6552.v \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -101559, 11558090]$ \(y^2=x^3-101559x+11558090\) 2.6.0.a.1, 4.24.0-4.b.1.2, 12.48.0-12.c.1.4, 56.48.0-56.h.1.24, 104.48.0.?, $\ldots$
6552.v6 6552.v \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/4\Z$ $1$ $[0, 0, 0, 6486, 818417]$ \(y^2=x^3+6486x+818417\) 2.3.0.a.1, 4.12.0-4.c.1.1, 6.6.0.a.1, 8.24.0-8.n.1.12, 12.24.0-12.g.1.2, $\ldots$
Next   displayed columns for results