Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
8670.a1 |
8670a1 |
8670.a |
8670a |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{5} \cdot 3^{6} \cdot 5 \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$0.642990037$ |
$1$ |
|
$4$ |
$2160$ |
$0.131925$ |
$-43713001/116640$ |
$0.92815$ |
$2.75533$ |
$[1, 1, 0, -48, 288]$ |
\(y^2+xy=x^3+x^2-48x+288\) |
40.2.0.a.1 |
$[(3, 12)]$ |
8670.b1 |
8670d1 |
8670.b |
8670d |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{6} \cdot 3^{7} \cdot 5^{10} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$514080$ |
$2.897453$ |
$-29324621982169/1366875000000$ |
$1.06237$ |
$6.40480$ |
$[1, 1, 0, -1227533, -4727641827]$ |
\(y^2+xy=x^3+x^2-1227533x-4727641827\) |
6.2.0.a.1 |
$[]$ |
8670.c1 |
8670c2 |
8670.c |
8670c |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{7} \cdot 3^{6} \cdot 5^{2} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2040$ |
$12$ |
$0$ |
$5.605738454$ |
$1$ |
|
$2$ |
$193536$ |
$2.255283$ |
$172735174415217961/39657600$ |
$1.00968$ |
$6.25189$ |
$[1, 1, 0, -3353128, -2364721472]$ |
\(y^2+xy=x^3+x^2-3353128x-2364721472\) |
2.3.0.a.1, 60.6.0.c.1, 136.6.0.?, 2040.12.0.? |
$[(8331, 736108)]$ |
8670.c2 |
8670c1 |
8670.c |
8670c |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{14} \cdot 3^{3} \cdot 5 \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2040$ |
$12$ |
$0$ |
$11.21147690$ |
$1$ |
|
$1$ |
$96768$ |
$1.908712$ |
$-41713327443241/639221760$ |
$0.96929$ |
$5.33627$ |
$[1, 1, 0, -208808, -37295808]$ |
\(y^2+xy=x^3+x^2-208808x-37295808\) |
2.3.0.a.1, 30.6.0.a.1, 136.6.0.?, 2040.12.0.? |
$[(4599961/47, 9499343655/47)]$ |
8670.d1 |
8670b2 |
8670.d |
8670b |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{3} \cdot 3^{4} \cdot 5^{8} \cdot 17^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.2 |
2B |
$136$ |
$12$ |
$0$ |
$7.999874589$ |
$1$ |
|
$2$ |
$208896$ |
$2.427559$ |
$451747330217/253125000$ |
$1.05420$ |
$5.77167$ |
$[1, 1, 0, -785363, -48068283]$ |
\(y^2+xy=x^3+x^2-785363x-48068283\) |
2.3.0.a.1, 8.6.0.f.1, 68.6.0.c.1, 136.12.0.? |
$[(208489, 95092500)]$ |
8670.d2 |
8670b1 |
8670.d |
8670b |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{6} \cdot 3^{2} \cdot 5^{4} \cdot 17^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.2 |
2B |
$136$ |
$12$ |
$0$ |
$3.999937294$ |
$1$ |
|
$3$ |
$104448$ |
$2.080986$ |
$190407092777/360000$ |
$0.98158$ |
$5.67639$ |
$[1, 1, 0, -588843, -173880387]$ |
\(y^2+xy=x^3+x^2-588843x-173880387\) |
2.3.0.a.1, 8.6.0.f.1, 34.6.0.a.1, 136.12.0.? |
$[(894, 3453)]$ |
8670.e1 |
8670g1 |
8670.e |
8670g |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{7} \cdot 3^{10} \cdot 5^{7} \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$0.544144763$ |
$1$ |
|
$6$ |
$105840$ |
$1.995007$ |
$-29036780124540841/590490000000$ |
$1.05534$ |
$5.43414$ |
$[1, 1, 0, -279902, -58107276]$ |
\(y^2+xy=x^3+x^2-279902x-58107276\) |
40.2.0.a.1 |
$[(1463, 50906)]$ |
8670.f1 |
8670f1 |
8670.f |
8670f |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{2} \cdot 3^{5} \cdot 5^{2} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$0.485088240$ |
$1$ |
|
$6$ |
$73440$ |
$1.512486$ |
$-910904761/24300$ |
$0.91872$ |
$4.77972$ |
$[1, 1, 0, -38587, 2967961]$ |
\(y^2+xy=x^3+x^2-38587x+2967961\) |
6.2.0.a.1 |
$[(120, 229)]$ |
8670.g1 |
8670e7 |
8670.g |
8670e |
$8$ |
$12$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{3} \cdot 3^{4} \cdot 5^{3} \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.1, 3.4.0.1 |
2B, 3B |
$2040$ |
$384$ |
$5$ |
$1$ |
$4$ |
$2$ |
$0$ |
$110592$ |
$1.980772$ |
$16778985534208729/81000$ |
$1.08181$ |
$5.99475$ |
$[1, 1, 0, -1541387, -737215371]$ |
\(y^2+xy=x^3+x^2-1541387x-737215371\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.24.0.g.1, $\ldots$ |
$[]$ |
8670.g2 |
8670e8 |
8670.g |
8670e |
$8$ |
$12$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{3} \cdot 3 \cdot 5^{12} \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.1, 3.4.0.1 |
2B, 3B |
$2040$ |
$384$ |
$5$ |
$1$ |
$1$ |
|
$0$ |
$110592$ |
$1.980772$ |
$10316097499609/5859375000$ |
$1.13600$ |
$5.17931$ |
$[1, 1, 0, -131067, -2540379]$ |
\(y^2+xy=x^3+x^2-131067x-2540379\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.48.0.c.3, $\ldots$ |
$[]$ |
8670.g3 |
8670e6 |
8670.g |
8670e |
$8$ |
$12$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{6} \cdot 3^{2} \cdot 5^{6} \cdot 17^{6} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.6.0.1, 3.4.0.1 |
2Cs, 3B |
$2040$ |
$384$ |
$5$ |
$1$ |
$1$ |
|
$2$ |
$55296$ |
$1.634199$ |
$4102915888729/9000000$ |
$1.05221$ |
$5.07763$ |
$[1, 1, 0, -96387, -11536371]$ |
\(y^2+xy=x^3+x^2-96387x-11536371\) |
2.6.0.a.1, 3.4.0.a.1, 6.24.0.a.1, 12.48.0.a.1, 24.96.1.cp.2, $\ldots$ |
$[]$ |
8670.g4 |
8670e5 |
8670.g |
8670e |
$8$ |
$12$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2 \cdot 3^{3} \cdot 5^{4} \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.1, 3.4.0.1 |
2B, 3B |
$2040$ |
$384$ |
$5$ |
$1$ |
$1$ |
|
$0$ |
$36864$ |
$1.431467$ |
$2656166199049/33750$ |
$1.05017$ |
$5.02967$ |
$[1, 1, 0, -83382, 9232614]$ |
\(y^2+xy=x^3+x^2-83382x+9232614\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.48.0.c.4, $\ldots$ |
$[]$ |
8670.g5 |
8670e4 |
8670.g |
8670e |
$8$ |
$12$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2 \cdot 3^{12} \cdot 5 \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.1, 3.4.0.1 |
2B, 3B |
$2040$ |
$384$ |
$5$ |
$1$ |
$4$ |
$2$ |
$0$ |
$36864$ |
$1.431467$ |
$35578826569/5314410$ |
$1.03393$ |
$4.55404$ |
$[1, 1, 0, -19802, -932094]$ |
\(y^2+xy=x^3+x^2-19802x-932094\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.24.0.g.1, $\ldots$ |
$[]$ |
8670.g6 |
8670e2 |
8670.g |
8670e |
$8$ |
$12$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{2} \cdot 3^{6} \cdot 5^{2} \cdot 17^{6} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.6.0.1, 3.4.0.1 |
2Cs, 3B |
$2040$ |
$384$ |
$5$ |
$1$ |
$1$ |
|
$2$ |
$18432$ |
$1.084892$ |
$702595369/72900$ |
$1.00457$ |
$4.12121$ |
$[1, 1, 0, -5352, 134316]$ |
\(y^2+xy=x^3+x^2-5352x+134316\) |
2.6.0.a.1, 3.4.0.a.1, 6.24.0.a.1, 12.48.0.a.2, 24.96.1.cp.4, $\ldots$ |
$[]$ |
8670.g7 |
8670e3 |
8670.g |
8670e |
$8$ |
$12$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{12} \cdot 3 \cdot 5^{3} \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.1, 3.4.0.1 |
2B, 3B |
$2040$ |
$384$ |
$5$ |
$1$ |
$1$ |
|
$1$ |
$27648$ |
$1.287626$ |
$-273359449/1536000$ |
$1.04920$ |
$4.27860$ |
$[1, 1, 0, -3907, -309299]$ |
\(y^2+xy=x^3+x^2-3907x-309299\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.48.0.c.1, $\ldots$ |
$[]$ |
8670.g8 |
8670e1 |
8670.g |
8670e |
$8$ |
$12$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5 \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.1, 3.4.0.1 |
2B, 3B |
$2040$ |
$384$ |
$5$ |
$1$ |
$1$ |
|
$1$ |
$9216$ |
$0.738319$ |
$357911/2160$ |
$0.99689$ |
$3.53246$ |
$[1, 1, 0, 428, 10624]$ |
\(y^2+xy=x^3+x^2+428x+10624\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.48.0.c.2, $\ldots$ |
$[]$ |
8670.h1 |
8670i1 |
8670.h |
8670i |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{2} \cdot 3^{5} \cdot 5^{2} \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$0.094149608$ |
$1$ |
|
$28$ |
$4320$ |
$0.095879$ |
$-910904761/24300$ |
$0.91872$ |
$2.90500$ |
$[1, 0, 1, -134, 596]$ |
\(y^2+xy+y=x^3-134x+596\) |
6.2.0.a.1 |
$[(3, 13), (-12, 28)]$ |
8670.i1 |
8670h1 |
8670.i |
8670h |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{7} \cdot 3^{10} \cdot 5^{7} \cdot 17^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$1799280$ |
$3.411613$ |
$-29036780124540841/590490000000$ |
$1.05534$ |
$7.30886$ |
$[1, 0, 1, -80891829, -284914804544]$ |
\(y^2+xy+y=x^3-80891829x-284914804544\) |
40.2.0.a.1 |
$[]$ |
8670.j1 |
8670k2 |
8670.j |
8670k |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{3} \cdot 3^{4} \cdot 5^{8} \cdot 17^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.2 |
2B |
$136$ |
$12$ |
$0$ |
$0.346784162$ |
$1$ |
|
$10$ |
$12288$ |
$1.010952$ |
$451747330217/253125000$ |
$1.05420$ |
$3.89694$ |
$[1, 0, 1, -2718, -9944]$ |
\(y^2+xy+y=x^3-2718x-9944\) |
2.3.0.a.1, 8.6.0.f.1, 68.6.0.c.1, 136.12.0.? |
$[(-40, 207)]$ |
8670.j2 |
8670k1 |
8670.j |
8670k |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{6} \cdot 3^{2} \cdot 5^{4} \cdot 17^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.2 |
2B |
$136$ |
$12$ |
$0$ |
$0.693568325$ |
$1$ |
|
$7$ |
$6144$ |
$0.664378$ |
$190407092777/360000$ |
$0.98158$ |
$3.80167$ |
$[1, 0, 1, -2038, -35512]$ |
\(y^2+xy+y=x^3-2038x-35512\) |
2.3.0.a.1, 8.6.0.f.1, 34.6.0.a.1, 136.12.0.? |
$[(-26, 5)]$ |
8670.k1 |
8670l2 |
8670.k |
8670l |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{9} \cdot 3^{14} \cdot 5^{2} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2040$ |
$12$ |
$0$ |
$0.726209555$ |
$1$ |
|
$8$ |
$580608$ |
$2.759209$ |
$10901014250685308569/1040774054400$ |
$1.02506$ |
$6.70900$ |
$[1, 0, 1, -13349928, 18771756406]$ |
\(y^2+xy+y=x^3-13349928x+18771756406\) |
2.3.0.a.1, 60.6.0.c.1, 136.6.0.?, 2040.12.0.? |
$[(2132, 234)]$ |
8670.k2 |
8670l1 |
8670.k |
8670l |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{18} \cdot 3^{7} \cdot 5 \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2040$ |
$12$ |
$0$ |
$1.452419110$ |
$1$ |
|
$7$ |
$290304$ |
$2.412636$ |
$-2113364608155289/828431400960$ |
$0.99736$ |
$5.82331$ |
$[1, 0, 1, -772648, 338494838]$ |
\(y^2+xy+y=x^3-772648x+338494838\) |
2.3.0.a.1, 30.6.0.a.1, 136.6.0.?, 2040.12.0.? |
$[(-758, 22487)]$ |
8670.l1 |
8670j1 |
8670.l |
8670j |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{6} \cdot 3^{7} \cdot 5^{10} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$0.129474812$ |
$1$ |
|
$10$ |
$30240$ |
$1.480846$ |
$-29324621982169/1366875000000$ |
$1.06237$ |
$4.53008$ |
$[1, 0, 1, -4248, -962522]$ |
\(y^2+xy+y=x^3-4248x-962522\) |
6.2.0.a.1 |
$[(209, 2595)]$ |
8670.m1 |
8670m1 |
8670.m |
8670m |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{5} \cdot 3^{6} \cdot 5 \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$36720$ |
$1.548532$ |
$-43713001/116640$ |
$0.92815$ |
$4.63005$ |
$[1, 0, 1, -14023, 1512746]$ |
\(y^2+xy+y=x^3-14023x+1512746\) |
40.2.0.a.1 |
$[]$ |
8670.n1 |
8670n4 |
8670.n |
8670n |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$2040$ |
$96$ |
$1$ |
$1$ |
$9$ |
$3$ |
$0$ |
$248832$ |
$2.488186$ |
$15916310615119911121/2210850$ |
$1.02634$ |
$6.75074$ |
$[1, 1, 1, -15145051, -22692117001]$ |
\(y^2+xy+y=x^3+x^2-15145051x-22692117001\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0-6.a.1.13, 51.8.0-3.a.1.1, $\ldots$ |
$[]$ |
8670.n2 |
8670n3 |
8670.n |
8670n |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{2} \cdot 3 \cdot 5 \cdot 17^{12} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$2040$ |
$96$ |
$1$ |
$1$ |
$9$ |
$3$ |
$1$ |
$124416$ |
$2.141613$ |
$-3884775383991601/1448254140$ |
$0.99304$ |
$5.83348$ |
$[1, 1, 1, -946481, -354926677]$ |
\(y^2+xy+y=x^3+x^2-946481x-354926677\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0-6.a.1.2, 30.24.0.b.1, $\ldots$ |
$[]$ |
8670.n3 |
8670n2 |
8670.n |
8670n |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{3} \cdot 3^{6} \cdot 5^{6} \cdot 17^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$2040$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$82944$ |
$1.938881$ |
$31080575499121/1549125000$ |
$0.96847$ |
$5.30093$ |
$[1, 1, 1, -189301, -30384301]$ |
\(y^2+xy+y=x^3+x^2-189301x-30384301\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0-6.a.1.5, 51.8.0-3.a.1.2, $\ldots$ |
$[]$ |
8670.n4 |
8670n1 |
8670.n |
8670n |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{6} \cdot 3^{3} \cdot 5^{3} \cdot 17^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$2040$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$41472$ |
$1.592306$ |
$1723683599/62424000$ |
$0.97642$ |
$4.67458$ |
$[1, 1, 1, 7219, -1849597]$ |
\(y^2+xy+y=x^3+x^2+7219x-1849597\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0-6.a.1.10, 30.24.0.b.1, $\ldots$ |
$[]$ |
8670.o1 |
8670p1 |
8670.o |
8670p |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{10} \cdot 3 \cdot 5^{2} \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$0.063396328$ |
$1$ |
|
$10$ |
$15840$ |
$0.968302$ |
$-2048707405729/76800$ |
$1.12780$ |
$4.37614$ |
$[1, 1, 1, -11566, 473963]$ |
\(y^2+xy+y=x^3+x^2-11566x+473963\) |
6.2.0.a.1 |
$[(1, 679)]$ |
8670.p1 |
8670o1 |
8670.p |
8670o |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{3} \cdot 3^{10} \cdot 5 \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$22.94709795$ |
$1$ |
|
$0$ |
$403920$ |
$2.596989$ |
$-56136684668636449/2361960$ |
$1.03040$ |
$6.75285$ |
$[1, 1, 1, -15241866, -22910034561]$ |
\(y^2+xy+y=x^3+x^2-15241866x-22910034561\) |
40.2.0.a.1 |
$[(180862152967/4607, 66338149481821837/4607)]$ |
8670.q1 |
8670s1 |
8670.q |
8670s |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{11} \cdot 3^{2} \cdot 5^{5} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$0.051285787$ |
$1$ |
|
$14$ |
$7920$ |
$0.640261$ |
$34822511/57600000$ |
$1.06670$ |
$3.41764$ |
$[1, 1, 1, 45, 6225]$ |
\(y^2+xy+y=x^3+x^2+45x+6225\) |
40.2.0.a.1 |
$[(43, 278)]$ |
8670.r1 |
8670r3 |
8670.r |
8670r |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2 \cdot 3^{4} \cdot 5^{4} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$2040$ |
$48$ |
$0$ |
$2.275524830$ |
$1$ |
|
$0$ |
$36864$ |
$1.491982$ |
$711882749089/1721250$ |
$1.00970$ |
$4.88446$ |
$[1, 1, 1, -53760, -4810113]$ |
\(y^2+xy+y=x^3+x^2-53760x-4810113\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 120.24.0.?, 136.24.0.?, 2040.48.0.? |
$[(1143/2, 13303/2)]$ |
8670.r2 |
8670r4 |
8670.r |
8670r |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2 \cdot 3 \cdot 5 \cdot 17^{10} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$2040$ |
$48$ |
$0$ |
$9.102099320$ |
$1$ |
|
$0$ |
$36864$ |
$1.491982$ |
$506071034209/2505630$ |
$0.93940$ |
$4.84683$ |
$[1, 1, 1, -47980, 4007855]$ |
\(y^2+xy+y=x^3+x^2-47980x+4007855\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 120.24.0.?, 136.24.0.?, $\ldots$ |
$[(8995/2, 840437/2)]$ |
8670.r3 |
8670r2 |
8670.r |
8670r |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$2040$ |
$48$ |
$0$ |
$4.551049660$ |
$1$ |
|
$4$ |
$18432$ |
$1.145407$ |
$454756609/260100$ |
$1.06745$ |
$4.07323$ |
$[1, 1, 1, -4630, -15025]$ |
\(y^2+xy+y=x^3+x^2-4630x-15025\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 120.24.0.?, 136.24.0.?, 1020.24.0.?, $\ldots$ |
$[(2245, 105229)]$ |
8670.r4 |
8670r1 |
8670.r |
8670r |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3 \cdot 5 \cdot 17^{7} \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$2040$ |
$48$ |
$0$ |
$9.102099320$ |
$1$ |
|
$3$ |
$9216$ |
$0.798834$ |
$6967871/4080$ |
$0.91966$ |
$3.61242$ |
$[1, 1, 1, 1150, -1153]$ |
\(y^2+xy+y=x^3+x^2+1150x-1153\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 120.24.0.?, 136.24.0.?, 510.6.0.?, $\ldots$ |
$[(785/16, 192991/16)]$ |
8670.s1 |
8670q2 |
8670.s |
8670q |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{5} \cdot 3^{10} \cdot 5^{2} \cdot 17^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2040$ |
$12$ |
$0$ |
$2.626518544$ |
$1$ |
|
$4$ |
$217600$ |
$2.323914$ |
$339630096833/47239200$ |
$0.99048$ |
$5.74021$ |
$[1, 1, 1, -714125, 202152035]$ |
\(y^2+xy+y=x^3+x^2-714125x+202152035\) |
2.3.0.a.1, 120.6.0.?, 136.6.0.?, 1020.6.0.?, 2040.12.0.? |
$[(33, 13348)]$ |
8670.s2 |
8670q1 |
8670.s |
8670q |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{10} \cdot 3^{5} \cdot 5 \cdot 17^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2040$ |
$12$ |
$0$ |
$5.253037089$ |
$1$ |
|
$3$ |
$108800$ |
$1.977339$ |
$347428927/1244160$ |
$0.97546$ |
$5.16247$ |
$[1, 1, 1, 71955, 16951587]$ |
\(y^2+xy+y=x^3+x^2+71955x+16951587\) |
2.3.0.a.1, 120.6.0.?, 136.6.0.?, 510.6.0.?, 2040.12.0.? |
$[(315, 8268)]$ |
8670.t1 |
8670t1 |
8670.t |
8670t |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{14} \cdot 3^{11} \cdot 5^{2} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$376992$ |
$2.653370$ |
$4589352212399/72559411200$ |
$1.03977$ |
$6.07555$ |
$[1, 1, 1, 661515, 1062713115]$ |
\(y^2+xy+y=x^3+x^2+661515x+1062713115\) |
6.2.0.a.1 |
$[]$ |
8670.u1 |
8670w1 |
8670.u |
8670w |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{14} \cdot 3^{11} \cdot 5^{2} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$0.043517567$ |
$1$ |
|
$16$ |
$22176$ |
$1.236763$ |
$4589352212399/72559411200$ |
$1.03977$ |
$4.20083$ |
$[1, 0, 0, 2289, 216441]$ |
\(y^2+xy=x^3+2289x+216441\) |
6.2.0.a.1 |
$[(66, 777)]$ |
8670.v1 |
8670v7 |
8670.v |
8670v |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2 \cdot 3^{16} \cdot 5^{4} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.96.0.242 |
2B |
$8160$ |
$768$ |
$13$ |
$3.462948728$ |
$1$ |
|
$0$ |
$589824$ |
$2.903347$ |
$161572377633716256481/914742821250$ |
$1.03379$ |
$7.00633$ |
$[1, 0, 0, -32792836, -72282118834]$ |
\(y^2+xy=x^3-32792836x-72282118834\) |
2.3.0.a.1, 4.6.0.c.1, 8.48.0-8.bb.1.4, 16.96.0-16.x.1.3, 68.12.0-4.c.1.1, $\ldots$ |
$[(-52979/4, 84283/4)]$ |
8670.v2 |
8670v4 |
8670.v |
8670v |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.96.0.30 |
2B |
$8160$ |
$768$ |
$13$ |
$3.462948728$ |
$1$ |
|
$2$ |
$147456$ |
$2.210201$ |
$1139466686381936641/4080$ |
$1.01700$ |
$6.45995$ |
$[1, 0, 0, -6288646, 6069408116]$ |
\(y^2+xy=x^3-6288646x+6069408116\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.1, 16.48.0-16.g.1.1, 32.96.0-32.e.2.15, $\ldots$ |
$[(2098, 44902)]$ |
8670.v3 |
8670v5 |
8670.v |
8670v |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{2} \cdot 3^{8} \cdot 5^{8} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.96.0.139 |
2Cs |
$4080$ |
$768$ |
$13$ |
$6.925897456$ |
$1$ |
|
$2$ |
$294912$ |
$2.556774$ |
$41623544884956481/2962701562500$ |
$1.00549$ |
$6.09495$ |
$[1, 0, 0, -2086586, -1086607584]$ |
\(y^2+xy=x^3-2086586x-1086607584\) |
2.6.0.a.1, 4.12.0.b.1, 8.96.0-8.k.2.6, 68.24.0-4.b.1.1, 136.192.1.?, $\ldots$ |
$[(17080/3, 1116508/3)]$ |
8670.v4 |
8670v3 |
8670.v |
8670v |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 17^{10} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.96.0.82 |
2Cs |
$4080$ |
$768$ |
$13$ |
$3.462948728$ |
$1$ |
|
$6$ |
$147456$ |
$2.210201$ |
$330240275458561/67652010000$ |
$1.06774$ |
$5.56156$ |
$[1, 0, 0, -416166, 83020500]$ |
\(y^2+xy=x^3-416166x+83020500\) |
2.6.0.a.1, 4.24.0.b.1, 8.96.0-8.b.1.6, 68.48.0-4.b.1.1, 120.192.1.?, $\ldots$ |
$[(806, 16070)]$ |
8670.v5 |
8670v2 |
8670.v |
8670v |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.96.0.36 |
2Cs |
$4080$ |
$768$ |
$13$ |
$1.731474364$ |
$1$ |
|
$8$ |
$73728$ |
$1.863626$ |
$278202094583041/16646400$ |
$0.97964$ |
$5.54265$ |
$[1, 0, 0, -393046, 94807076]$ |
\(y^2+xy=x^3-393046x+94807076\) |
2.6.0.a.1, 4.12.0.b.1, 8.48.0-8.i.1.3, 16.96.0-16.d.1.3, 60.24.0-4.b.1.2, $\ldots$ |
$[(356, 2)]$ |
8670.v6 |
8670v1 |
8670.v |
8670v |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{16} \cdot 3 \cdot 5 \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.96.0.30 |
2B |
$8160$ |
$768$ |
$13$ |
$0.865737182$ |
$1$ |
|
$5$ |
$36864$ |
$1.517052$ |
$-56667352321/16711680$ |
$1.00176$ |
$4.65079$ |
$[1, 0, 0, -23126, 1661220]$ |
\(y^2+xy=x^3-23126x+1661220\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.1, 16.48.0-16.g.1.1, 32.96.0-32.e.2.15, $\ldots$ |
$[(126, 804)]$ |
8670.v7 |
8670v6 |
8670.v |
8670v |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 17^{14} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.96.0.208 |
2B |
$8160$ |
$768$ |
$13$ |
$6.925897456$ |
$1$ |
|
$2$ |
$294912$ |
$2.556774$ |
$3168685387909439/6278181696900$ |
$1.01379$ |
$5.90857$ |
$[1, 0, 0, 884334, 498400200]$ |
\(y^2+xy=x^3+884334x+498400200\) |
2.3.0.a.1, 4.12.0.d.1, 8.48.0.n.1, 16.96.0-8.n.1.3, 60.24.0.h.1, $\ldots$ |
$[(356, 29120)]$ |
8670.v8 |
8670v8 |
8670.v |
8670v |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2 \cdot 3^{4} \cdot 5^{16} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.96.0.265 |
2B |
$8160$ |
$768$ |
$13$ |
$13.85179491$ |
$1$ |
|
$0$ |
$589824$ |
$2.903347$ |
$31077313442863199/420227050781250$ |
$1.04291$ |
$6.40543$ |
$[1, 0, 0, 1892944, -4740612030]$ |
\(y^2+xy=x^3+1892944x-4740612030\) |
2.3.0.a.1, 4.6.0.c.1, 8.48.0-8.ba.1.4, 16.96.0-16.u.1.3, 68.12.0-4.c.1.1, $\ldots$ |
$[(9649951/78, 22147492307/78)]$ |
8670.w1 |
8670u2 |
8670.w |
8670u |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{5} \cdot 3^{10} \cdot 5^{2} \cdot 17^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2040$ |
$12$ |
$0$ |
$0.146168785$ |
$1$ |
|
$14$ |
$12800$ |
$0.907306$ |
$339630096833/47239200$ |
$0.99048$ |
$3.86548$ |
$[1, 0, 0, -2471, 41001]$ |
\(y^2+xy=x^3-2471x+41001\) |
2.3.0.a.1, 120.6.0.?, 136.6.0.?, 1020.6.0.?, 2040.12.0.? |
$[(58, 277)]$ |
8670.w2 |
8670u1 |
8670.w |
8670u |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{10} \cdot 3^{5} \cdot 5 \cdot 17^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2040$ |
$12$ |
$0$ |
$0.292337571$ |
$1$ |
|
$11$ |
$6400$ |
$0.560732$ |
$347428927/1244160$ |
$0.97546$ |
$3.28775$ |
$[1, 0, 0, 249, 3465]$ |
\(y^2+xy=x^3+249x+3465\) |
2.3.0.a.1, 120.6.0.?, 136.6.0.?, 510.6.0.?, 2040.12.0.? |
$[(6, 69)]$ |
8670.x1 |
8670x1 |
8670.x |
8670x |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{11} \cdot 3^{2} \cdot 5^{5} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$134640$ |
$2.056866$ |
$34822511/57600000$ |
$1.06670$ |
$5.29236$ |
$[1, 0, 0, 12999, 30493305]$ |
\(y^2+xy=x^3+12999x+30493305\) |
40.2.0.a.1 |
$[]$ |