Learn more

Refine search


Results (1-50 of 58 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-mm images
8670.a1 8670.a 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 trivial\mathsf{trivial} 0.6429900370.642990037 [1,1,0,48,288][1, 1, 0, -48, 288] y2+xy=x3+x248x+288y^2+xy=x^3+x^2-48x+288 40.2.0.a.1
8670.b1 8670.b 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 00 trivial\mathsf{trivial} 11 [1,1,0,1227533,4727641827][1, 1, 0, -1227533, -4727641827] y2+xy=x3+x21227533x4727641827y^2+xy=x^3+x^2-1227533x-4727641827 6.2.0.a.1
8670.c1 8670.c 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 Z/2Z\Z/2\Z 5.6057384545.605738454 [1,1,0,3353128,2364721472][1, 1, 0, -3353128, -2364721472] y2+xy=x3+x23353128x2364721472y^2+xy=x^3+x^2-3353128x-2364721472 2.3.0.a.1, 60.6.0.c.1, 136.6.0.?, 2040.12.0.?
8670.c2 8670.c 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 Z/2Z\Z/2\Z 11.2114769011.21147690 [1,1,0,208808,37295808][1, 1, 0, -208808, -37295808] y2+xy=x3+x2208808x37295808y^2+xy=x^3+x^2-208808x-37295808 2.3.0.a.1, 30.6.0.a.1, 136.6.0.?, 2040.12.0.?
8670.d1 8670.d 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 Z/2Z\Z/2\Z 7.9998745897.999874589 [1,1,0,785363,48068283][1, 1, 0, -785363, -48068283] y2+xy=x3+x2785363x48068283y^2+xy=x^3+x^2-785363x-48068283 2.3.0.a.1, 8.6.0.f.1, 68.6.0.c.1, 136.12.0.?
8670.d2 8670.d 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 Z/2Z\Z/2\Z 3.9999372943.999937294 [1,1,0,588843,173880387][1, 1, 0, -588843, -173880387] y2+xy=x3+x2588843x173880387y^2+xy=x^3+x^2-588843x-173880387 2.3.0.a.1, 8.6.0.f.1, 34.6.0.a.1, 136.12.0.?
8670.e1 8670.e 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 trivial\mathsf{trivial} 0.5441447630.544144763 [1,1,0,279902,58107276][1, 1, 0, -279902, -58107276] y2+xy=x3+x2279902x58107276y^2+xy=x^3+x^2-279902x-58107276 40.2.0.a.1
8670.f1 8670.f 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 trivial\mathsf{trivial} 0.4850882400.485088240 [1,1,0,38587,2967961][1, 1, 0, -38587, 2967961] y2+xy=x3+x238587x+2967961y^2+xy=x^3+x^2-38587x+2967961 6.2.0.a.1
8670.g1 8670.g 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 00 Z/2Z\Z/2\Z 11 [1,1,0,1541387,737215371][1, 1, 0, -1541387, -737215371] y2+xy=x3+x21541387x737215371y^2+xy=x^3+x^2-1541387x-737215371 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.24.0.g.1, \ldots
8670.g2 8670.g 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 00 Z/2Z\Z/2\Z 11 [1,1,0,131067,2540379][1, 1, 0, -131067, -2540379] y2+xy=x3+x2131067x2540379y^2+xy=x^3+x^2-131067x-2540379 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.48.0.c.3, \ldots
8670.g3 8670.g 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,1,0,96387,11536371][1, 1, 0, -96387, -11536371] y2+xy=x3+x296387x11536371y^2+xy=x^3+x^2-96387x-11536371 2.6.0.a.1, 3.4.0.a.1, 6.24.0.a.1, 12.48.0.a.1, 24.96.1.cp.2, \ldots
8670.g4 8670.g 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 00 Z/2Z\Z/2\Z 11 [1,1,0,83382,9232614][1, 1, 0, -83382, 9232614] y2+xy=x3+x283382x+9232614y^2+xy=x^3+x^2-83382x+9232614 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.48.0.c.4, \ldots
8670.g5 8670.g 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 00 Z/2Z\Z/2\Z 11 [1,1,0,19802,932094][1, 1, 0, -19802, -932094] y2+xy=x3+x219802x932094y^2+xy=x^3+x^2-19802x-932094 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.24.0.g.1, \ldots
8670.g6 8670.g 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,1,0,5352,134316][1, 1, 0, -5352, 134316] y2+xy=x3+x25352x+134316y^2+xy=x^3+x^2-5352x+134316 2.6.0.a.1, 3.4.0.a.1, 6.24.0.a.1, 12.48.0.a.2, 24.96.1.cp.4, \ldots
8670.g7 8670.g 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 00 Z/2Z\Z/2\Z 11 [1,1,0,3907,309299][1, 1, 0, -3907, -309299] y2+xy=x3+x23907x309299y^2+xy=x^3+x^2-3907x-309299 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.48.0.c.1, \ldots
8670.g8 8670.g 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 00 Z/2Z\Z/2\Z 11 [1,1,0,428,10624][1, 1, 0, 428, 10624] y2+xy=x3+x2+428x+10624y^2+xy=x^3+x^2+428x+10624 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.48.0.c.2, \ldots
8670.h1 8670.h 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 22 trivial\mathsf{trivial} 0.0941496080.094149608 [1,0,1,134,596][1, 0, 1, -134, 596] y2+xy+y=x3134x+596y^2+xy+y=x^3-134x+596 6.2.0.a.1
8670.i1 8670.i 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 00 trivial\mathsf{trivial} 11 [1,0,1,80891829,284914804544][1, 0, 1, -80891829, -284914804544] y2+xy+y=x380891829x284914804544y^2+xy+y=x^3-80891829x-284914804544 40.2.0.a.1
8670.j1 8670.j 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 Z/2Z\Z/2\Z 0.3467841620.346784162 [1,0,1,2718,9944][1, 0, 1, -2718, -9944] y2+xy+y=x32718x9944y^2+xy+y=x^3-2718x-9944 2.3.0.a.1, 8.6.0.f.1, 68.6.0.c.1, 136.12.0.?
8670.j2 8670.j 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 Z/2Z\Z/2\Z 0.6935683250.693568325 [1,0,1,2038,35512][1, 0, 1, -2038, -35512] y2+xy+y=x32038x35512y^2+xy+y=x^3-2038x-35512 2.3.0.a.1, 8.6.0.f.1, 34.6.0.a.1, 136.12.0.?
8670.k1 8670.k 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 Z/2Z\Z/2\Z 0.7262095550.726209555 [1,0,1,13349928,18771756406][1, 0, 1, -13349928, 18771756406] y2+xy+y=x313349928x+18771756406y^2+xy+y=x^3-13349928x+18771756406 2.3.0.a.1, 60.6.0.c.1, 136.6.0.?, 2040.12.0.?
8670.k2 8670.k 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 Z/2Z\Z/2\Z 1.4524191101.452419110 [1,0,1,772648,338494838][1, 0, 1, -772648, 338494838] y2+xy+y=x3772648x+338494838y^2+xy+y=x^3-772648x+338494838 2.3.0.a.1, 30.6.0.a.1, 136.6.0.?, 2040.12.0.?
8670.l1 8670.l 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 trivial\mathsf{trivial} 0.1294748120.129474812 [1,0,1,4248,962522][1, 0, 1, -4248, -962522] y2+xy+y=x34248x962522y^2+xy+y=x^3-4248x-962522 6.2.0.a.1
8670.m1 8670.m 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 00 trivial\mathsf{trivial} 11 [1,0,1,14023,1512746][1, 0, 1, -14023, 1512746] y2+xy+y=x314023x+1512746y^2+xy+y=x^3-14023x+1512746 40.2.0.a.1
8670.n1 8670.n 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 00 Z/2Z\Z/2\Z 11 [1,1,1,15145051,22692117001][1, 1, 1, -15145051, -22692117001] y2+xy+y=x3+x215145051x22692117001y^2+xy+y=x^3+x^2-15145051x-22692117001 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0-6.a.1.13, 51.8.0-3.a.1.1, \ldots
8670.n2 8670.n 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 00 Z/2Z\Z/2\Z 11 [1,1,1,946481,354926677][1, 1, 1, -946481, -354926677] y2+xy+y=x3+x2946481x354926677y^2+xy+y=x^3+x^2-946481x-354926677 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0-6.a.1.2, 30.24.0.b.1, \ldots
8670.n3 8670.n 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 00 Z/2Z\Z/2\Z 11 [1,1,1,189301,30384301][1, 1, 1, -189301, -30384301] y2+xy+y=x3+x2189301x30384301y^2+xy+y=x^3+x^2-189301x-30384301 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0-6.a.1.5, 51.8.0-3.a.1.2, \ldots
8670.n4 8670.n 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 00 Z/2Z\Z/2\Z 11 [1,1,1,7219,1849597][1, 1, 1, 7219, -1849597] y2+xy+y=x3+x2+7219x1849597y^2+xy+y=x^3+x^2+7219x-1849597 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0-6.a.1.10, 30.24.0.b.1, \ldots
8670.o1 8670.o 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 trivial\mathsf{trivial} 0.0633963280.063396328 [1,1,1,11566,473963][1, 1, 1, -11566, 473963] y2+xy+y=x3+x211566x+473963y^2+xy+y=x^3+x^2-11566x+473963 6.2.0.a.1
8670.p1 8670.p 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 trivial\mathsf{trivial} 22.9470979522.94709795 [1,1,1,15241866,22910034561][1, 1, 1, -15241866, -22910034561] y2+xy+y=x3+x215241866x22910034561y^2+xy+y=x^3+x^2-15241866x-22910034561 40.2.0.a.1
8670.q1 8670.q 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 trivial\mathsf{trivial} 0.0512857870.051285787 [1,1,1,45,6225][1, 1, 1, 45, 6225] y2+xy+y=x3+x2+45x+6225y^2+xy+y=x^3+x^2+45x+6225 40.2.0.a.1
8670.r1 8670.r 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 Z/2Z\Z/2\Z 2.2755248302.275524830 [1,1,1,53760,4810113][1, 1, 1, -53760, -4810113] y2+xy+y=x3+x253760x4810113y^2+xy+y=x^3+x^2-53760x-4810113 2.3.0.a.1, 4.12.0-4.c.1.2, 120.24.0.?, 136.24.0.?, 2040.48.0.?
8670.r2 8670.r 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 Z/2Z\Z/2\Z 9.1020993209.102099320 [1,1,1,47980,4007855][1, 1, 1, -47980, 4007855] y2+xy+y=x3+x247980x+4007855y^2+xy+y=x^3+x^2-47980x+4007855 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 120.24.0.?, 136.24.0.?, \ldots
8670.r3 8670.r 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 4.5510496604.551049660 [1,1,1,4630,15025][1, 1, 1, -4630, -15025] y2+xy+y=x3+x24630x15025y^2+xy+y=x^3+x^2-4630x-15025 2.6.0.a.1, 4.12.0-2.a.1.1, 120.24.0.?, 136.24.0.?, 1020.24.0.?, \ldots
8670.r4 8670.r 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 Z/4Z\Z/4\Z 9.1020993209.102099320 [1,1,1,1150,1153][1, 1, 1, 1150, -1153] y2+xy+y=x3+x2+1150x1153y^2+xy+y=x^3+x^2+1150x-1153 2.3.0.a.1, 4.12.0-4.c.1.1, 120.24.0.?, 136.24.0.?, 510.6.0.?, \ldots
8670.s1 8670.s 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 Z/2Z\Z/2\Z 2.6265185442.626518544 [1,1,1,714125,202152035][1, 1, 1, -714125, 202152035] y2+xy+y=x3+x2714125x+202152035y^2+xy+y=x^3+x^2-714125x+202152035 2.3.0.a.1, 120.6.0.?, 136.6.0.?, 1020.6.0.?, 2040.12.0.?
8670.s2 8670.s 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 Z/2Z\Z/2\Z 5.2530370895.253037089 [1,1,1,71955,16951587][1, 1, 1, 71955, 16951587] y2+xy+y=x3+x2+71955x+16951587y^2+xy+y=x^3+x^2+71955x+16951587 2.3.0.a.1, 120.6.0.?, 136.6.0.?, 510.6.0.?, 2040.12.0.?
8670.t1 8670.t 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 00 trivial\mathsf{trivial} 11 [1,1,1,661515,1062713115][1, 1, 1, 661515, 1062713115] y2+xy+y=x3+x2+661515x+1062713115y^2+xy+y=x^3+x^2+661515x+1062713115 6.2.0.a.1
8670.u1 8670.u 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 trivial\mathsf{trivial} 0.0435175670.043517567 [1,0,0,2289,216441][1, 0, 0, 2289, 216441] y2+xy=x3+2289x+216441y^2+xy=x^3+2289x+216441 6.2.0.a.1
8670.v1 8670.v 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 Z/2Z\Z/2\Z 3.4629487283.462948728 [1,0,0,32792836,72282118834][1, 0, 0, -32792836, -72282118834] y2+xy=x332792836x72282118834y^2+xy=x^3-32792836x-72282118834 2.3.0.a.1, 4.6.0.c.1, 8.48.0-8.bb.1.4, 16.96.0-16.x.1.3, 68.12.0-4.c.1.1, \ldots
8670.v2 8670.v 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 Z/2Z\Z/2\Z 3.4629487283.462948728 [1,0,0,6288646,6069408116][1, 0, 0, -6288646, 6069408116] y2+xy=x36288646x+6069408116y^2+xy=x^3-6288646x+6069408116 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.1, 16.48.0-16.g.1.1, 32.96.0-32.e.2.15, \ldots
8670.v3 8670.v 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 6.9258974566.925897456 [1,0,0,2086586,1086607584][1, 0, 0, -2086586, -1086607584] y2+xy=x32086586x1086607584y^2+xy=x^3-2086586x-1086607584 2.6.0.a.1, 4.12.0.b.1, 8.96.0-8.k.2.6, 68.24.0-4.b.1.1, 136.192.1.?, \ldots
8670.v4 8670.v 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 3.4629487283.462948728 [1,0,0,416166,83020500][1, 0, 0, -416166, 83020500] y2+xy=x3416166x+83020500y^2+xy=x^3-416166x+83020500 2.6.0.a.1, 4.24.0.b.1, 8.96.0-8.b.1.6, 68.48.0-4.b.1.1, 120.192.1.?, \ldots
8670.v5 8670.v 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 1.7314743641.731474364 [1,0,0,393046,94807076][1, 0, 0, -393046, 94807076] y2+xy=x3393046x+94807076y^2+xy=x^3-393046x+94807076 2.6.0.a.1, 4.12.0.b.1, 8.48.0-8.i.1.3, 16.96.0-16.d.1.3, 60.24.0-4.b.1.2, \ldots
8670.v6 8670.v 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 Z/2Z\Z/2\Z 0.8657371820.865737182 [1,0,0,23126,1661220][1, 0, 0, -23126, 1661220] y2+xy=x323126x+1661220y^2+xy=x^3-23126x+1661220 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.1, 16.48.0-16.g.1.1, 32.96.0-32.e.2.15, \ldots
8670.v7 8670.v 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 Z/2Z\Z/2\Z 6.9258974566.925897456 [1,0,0,884334,498400200][1, 0, 0, 884334, 498400200] y2+xy=x3+884334x+498400200y^2+xy=x^3+884334x+498400200 2.3.0.a.1, 4.12.0.d.1, 8.48.0.n.1, 16.96.0-8.n.1.3, 60.24.0.h.1, \ldots
8670.v8 8670.v 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 Z/2Z\Z/2\Z 13.8517949113.85179491 [1,0,0,1892944,4740612030][1, 0, 0, 1892944, -4740612030] y2+xy=x3+1892944x4740612030y^2+xy=x^3+1892944x-4740612030 2.3.0.a.1, 4.6.0.c.1, 8.48.0-8.ba.1.4, 16.96.0-16.u.1.3, 68.12.0-4.c.1.1, \ldots
8670.w1 8670.w 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 Z/2Z\Z/2\Z 0.1461687850.146168785 [1,0,0,2471,41001][1, 0, 0, -2471, 41001] y2+xy=x32471x+41001y^2+xy=x^3-2471x+41001 2.3.0.a.1, 120.6.0.?, 136.6.0.?, 1020.6.0.?, 2040.12.0.?
8670.w2 8670.w 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 11 Z/2Z\Z/2\Z 0.2923375710.292337571 [1,0,0,249,3465][1, 0, 0, 249, 3465] y2+xy=x3+249x+3465y^2+xy=x^3+249x+3465 2.3.0.a.1, 120.6.0.?, 136.6.0.?, 510.6.0.?, 2040.12.0.?
8670.x1 8670.x 235172 2 \cdot 3 \cdot 5 \cdot 17^{2} 00 trivial\mathsf{trivial} 11 [1,0,0,12999,30493305][1, 0, 0, 12999, 30493305] y2+xy=x3+12999x+30493305y^2+xy=x^3+12999x+30493305 40.2.0.a.1
Next   displayed columns for results