Learn more

Refine search


Results (1-50 of 58 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
8670.a1 8670.a \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.642990037$ $[1, 1, 0, -48, 288]$ \(y^2+xy=x^3+x^2-48x+288\) 40.2.0.a.1
8670.b1 8670.b \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -1227533, -4727641827]$ \(y^2+xy=x^3+x^2-1227533x-4727641827\) 6.2.0.a.1
8670.c1 8670.c \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\Z/2\Z$ $5.605738454$ $[1, 1, 0, -3353128, -2364721472]$ \(y^2+xy=x^3+x^2-3353128x-2364721472\) 2.3.0.a.1, 60.6.0.c.1, 136.6.0.?, 2040.12.0.?
8670.c2 8670.c \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\Z/2\Z$ $11.21147690$ $[1, 1, 0, -208808, -37295808]$ \(y^2+xy=x^3+x^2-208808x-37295808\) 2.3.0.a.1, 30.6.0.a.1, 136.6.0.?, 2040.12.0.?
8670.d1 8670.d \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\Z/2\Z$ $7.999874589$ $[1, 1, 0, -785363, -48068283]$ \(y^2+xy=x^3+x^2-785363x-48068283\) 2.3.0.a.1, 8.6.0.f.1, 68.6.0.c.1, 136.12.0.?
8670.d2 8670.d \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\Z/2\Z$ $3.999937294$ $[1, 1, 0, -588843, -173880387]$ \(y^2+xy=x^3+x^2-588843x-173880387\) 2.3.0.a.1, 8.6.0.f.1, 34.6.0.a.1, 136.12.0.?
8670.e1 8670.e \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.544144763$ $[1, 1, 0, -279902, -58107276]$ \(y^2+xy=x^3+x^2-279902x-58107276\) 40.2.0.a.1
8670.f1 8670.f \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.485088240$ $[1, 1, 0, -38587, 2967961]$ \(y^2+xy=x^3+x^2-38587x+2967961\) 6.2.0.a.1
8670.g1 8670.g \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -1541387, -737215371]$ \(y^2+xy=x^3+x^2-1541387x-737215371\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.24.0.g.1, $\ldots$
8670.g2 8670.g \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -131067, -2540379]$ \(y^2+xy=x^3+x^2-131067x-2540379\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.48.0.c.3, $\ldots$
8670.g3 8670.g \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -96387, -11536371]$ \(y^2+xy=x^3+x^2-96387x-11536371\) 2.6.0.a.1, 3.4.0.a.1, 6.24.0.a.1, 12.48.0.a.1, 24.96.1.cp.2, $\ldots$
8670.g4 8670.g \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -83382, 9232614]$ \(y^2+xy=x^3+x^2-83382x+9232614\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.48.0.c.4, $\ldots$
8670.g5 8670.g \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -19802, -932094]$ \(y^2+xy=x^3+x^2-19802x-932094\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.24.0.g.1, $\ldots$
8670.g6 8670.g \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -5352, 134316]$ \(y^2+xy=x^3+x^2-5352x+134316\) 2.6.0.a.1, 3.4.0.a.1, 6.24.0.a.1, 12.48.0.a.2, 24.96.1.cp.4, $\ldots$
8670.g7 8670.g \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -3907, -309299]$ \(y^2+xy=x^3+x^2-3907x-309299\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.48.0.c.1, $\ldots$
8670.g8 8670.g \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 428, 10624]$ \(y^2+xy=x^3+x^2+428x+10624\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.48.0.c.2, $\ldots$
8670.h1 8670.h \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $2$ $\mathsf{trivial}$ $0.094149608$ $[1, 0, 1, -134, 596]$ \(y^2+xy+y=x^3-134x+596\) 6.2.0.a.1
8670.i1 8670.i \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -80891829, -284914804544]$ \(y^2+xy+y=x^3-80891829x-284914804544\) 40.2.0.a.1
8670.j1 8670.j \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\Z/2\Z$ $0.346784162$ $[1, 0, 1, -2718, -9944]$ \(y^2+xy+y=x^3-2718x-9944\) 2.3.0.a.1, 8.6.0.f.1, 68.6.0.c.1, 136.12.0.?
8670.j2 8670.j \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\Z/2\Z$ $0.693568325$ $[1, 0, 1, -2038, -35512]$ \(y^2+xy+y=x^3-2038x-35512\) 2.3.0.a.1, 8.6.0.f.1, 34.6.0.a.1, 136.12.0.?
8670.k1 8670.k \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\Z/2\Z$ $0.726209555$ $[1, 0, 1, -13349928, 18771756406]$ \(y^2+xy+y=x^3-13349928x+18771756406\) 2.3.0.a.1, 60.6.0.c.1, 136.6.0.?, 2040.12.0.?
8670.k2 8670.k \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\Z/2\Z$ $1.452419110$ $[1, 0, 1, -772648, 338494838]$ \(y^2+xy+y=x^3-772648x+338494838\) 2.3.0.a.1, 30.6.0.a.1, 136.6.0.?, 2040.12.0.?
8670.l1 8670.l \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.129474812$ $[1, 0, 1, -4248, -962522]$ \(y^2+xy+y=x^3-4248x-962522\) 6.2.0.a.1
8670.m1 8670.m \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -14023, 1512746]$ \(y^2+xy+y=x^3-14023x+1512746\) 40.2.0.a.1
8670.n1 8670.n \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -15145051, -22692117001]$ \(y^2+xy+y=x^3+x^2-15145051x-22692117001\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0-6.a.1.13, 51.8.0-3.a.1.1, $\ldots$
8670.n2 8670.n \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -946481, -354926677]$ \(y^2+xy+y=x^3+x^2-946481x-354926677\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0-6.a.1.2, 30.24.0.b.1, $\ldots$
8670.n3 8670.n \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -189301, -30384301]$ \(y^2+xy+y=x^3+x^2-189301x-30384301\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0-6.a.1.5, 51.8.0-3.a.1.2, $\ldots$
8670.n4 8670.n \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, 7219, -1849597]$ \(y^2+xy+y=x^3+x^2+7219x-1849597\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0-6.a.1.10, 30.24.0.b.1, $\ldots$
8670.o1 8670.o \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.063396328$ $[1, 1, 1, -11566, 473963]$ \(y^2+xy+y=x^3+x^2-11566x+473963\) 6.2.0.a.1
8670.p1 8670.p \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $22.94709795$ $[1, 1, 1, -15241866, -22910034561]$ \(y^2+xy+y=x^3+x^2-15241866x-22910034561\) 40.2.0.a.1
8670.q1 8670.q \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.051285787$ $[1, 1, 1, 45, 6225]$ \(y^2+xy+y=x^3+x^2+45x+6225\) 40.2.0.a.1
8670.r1 8670.r \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\Z/2\Z$ $2.275524830$ $[1, 1, 1, -53760, -4810113]$ \(y^2+xy+y=x^3+x^2-53760x-4810113\) 2.3.0.a.1, 4.12.0-4.c.1.2, 120.24.0.?, 136.24.0.?, 2040.48.0.?
8670.r2 8670.r \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\Z/2\Z$ $9.102099320$ $[1, 1, 1, -47980, 4007855]$ \(y^2+xy+y=x^3+x^2-47980x+4007855\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 120.24.0.?, 136.24.0.?, $\ldots$
8670.r3 8670.r \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.551049660$ $[1, 1, 1, -4630, -15025]$ \(y^2+xy+y=x^3+x^2-4630x-15025\) 2.6.0.a.1, 4.12.0-2.a.1.1, 120.24.0.?, 136.24.0.?, 1020.24.0.?, $\ldots$
8670.r4 8670.r \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\Z/4\Z$ $9.102099320$ $[1, 1, 1, 1150, -1153]$ \(y^2+xy+y=x^3+x^2+1150x-1153\) 2.3.0.a.1, 4.12.0-4.c.1.1, 120.24.0.?, 136.24.0.?, 510.6.0.?, $\ldots$
8670.s1 8670.s \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\Z/2\Z$ $2.626518544$ $[1, 1, 1, -714125, 202152035]$ \(y^2+xy+y=x^3+x^2-714125x+202152035\) 2.3.0.a.1, 120.6.0.?, 136.6.0.?, 1020.6.0.?, 2040.12.0.?
8670.s2 8670.s \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\Z/2\Z$ $5.253037089$ $[1, 1, 1, 71955, 16951587]$ \(y^2+xy+y=x^3+x^2+71955x+16951587\) 2.3.0.a.1, 120.6.0.?, 136.6.0.?, 510.6.0.?, 2040.12.0.?
8670.t1 8670.t \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, 661515, 1062713115]$ \(y^2+xy+y=x^3+x^2+661515x+1062713115\) 6.2.0.a.1
8670.u1 8670.u \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.043517567$ $[1, 0, 0, 2289, 216441]$ \(y^2+xy=x^3+2289x+216441\) 6.2.0.a.1
8670.v1 8670.v \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\Z/2\Z$ $3.462948728$ $[1, 0, 0, -32792836, -72282118834]$ \(y^2+xy=x^3-32792836x-72282118834\) 2.3.0.a.1, 4.6.0.c.1, 8.48.0-8.bb.1.4, 16.96.0-16.x.1.3, 68.12.0-4.c.1.1, $\ldots$
8670.v2 8670.v \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\Z/2\Z$ $3.462948728$ $[1, 0, 0, -6288646, 6069408116]$ \(y^2+xy=x^3-6288646x+6069408116\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.1, 16.48.0-16.g.1.1, 32.96.0-32.e.2.15, $\ldots$
8670.v3 8670.v \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $6.925897456$ $[1, 0, 0, -2086586, -1086607584]$ \(y^2+xy=x^3-2086586x-1086607584\) 2.6.0.a.1, 4.12.0.b.1, 8.96.0-8.k.2.6, 68.24.0-4.b.1.1, 136.192.1.?, $\ldots$
8670.v4 8670.v \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.462948728$ $[1, 0, 0, -416166, 83020500]$ \(y^2+xy=x^3-416166x+83020500\) 2.6.0.a.1, 4.24.0.b.1, 8.96.0-8.b.1.6, 68.48.0-4.b.1.1, 120.192.1.?, $\ldots$
8670.v5 8670.v \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.731474364$ $[1, 0, 0, -393046, 94807076]$ \(y^2+xy=x^3-393046x+94807076\) 2.6.0.a.1, 4.12.0.b.1, 8.48.0-8.i.1.3, 16.96.0-16.d.1.3, 60.24.0-4.b.1.2, $\ldots$
8670.v6 8670.v \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\Z/2\Z$ $0.865737182$ $[1, 0, 0, -23126, 1661220]$ \(y^2+xy=x^3-23126x+1661220\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.1, 16.48.0-16.g.1.1, 32.96.0-32.e.2.15, $\ldots$
8670.v7 8670.v \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\Z/2\Z$ $6.925897456$ $[1, 0, 0, 884334, 498400200]$ \(y^2+xy=x^3+884334x+498400200\) 2.3.0.a.1, 4.12.0.d.1, 8.48.0.n.1, 16.96.0-8.n.1.3, 60.24.0.h.1, $\ldots$
8670.v8 8670.v \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\Z/2\Z$ $13.85179491$ $[1, 0, 0, 1892944, -4740612030]$ \(y^2+xy=x^3+1892944x-4740612030\) 2.3.0.a.1, 4.6.0.c.1, 8.48.0-8.ba.1.4, 16.96.0-16.u.1.3, 68.12.0-4.c.1.1, $\ldots$
8670.w1 8670.w \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\Z/2\Z$ $0.146168785$ $[1, 0, 0, -2471, 41001]$ \(y^2+xy=x^3-2471x+41001\) 2.3.0.a.1, 120.6.0.?, 136.6.0.?, 1020.6.0.?, 2040.12.0.?
8670.w2 8670.w \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $1$ $\Z/2\Z$ $0.292337571$ $[1, 0, 0, 249, 3465]$ \(y^2+xy=x^3+249x+3465\) 2.3.0.a.1, 120.6.0.?, 136.6.0.?, 510.6.0.?, 2040.12.0.?
8670.x1 8670.x \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, 12999, 30493305]$ \(y^2+xy=x^3+12999x+30493305\) 40.2.0.a.1
Next   displayed columns for results