Learn more

Refine search


Results (28 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
912.a1 912.a \( 2^{4} \cdot 3 \cdot 19 \) $1$ $\mathsf{trivial}$ $1.134807958$ $[0, -1, 0, -57, -171]$ \(y^2=x^3-x^2-57x-171\) 38.2.0.a.1
912.b1 912.b \( 2^{4} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z$ $2.601893913$ $[0, -1, 0, -1624, -24656]$ \(y^2=x^3-x^2-1624x-24656\) 2.3.0.a.1, 4.12.0-4.c.1.2, 24.24.0-24.z.1.16, 76.24.0.?, 456.48.0.?
912.b2 912.b \( 2^{4} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.300946956$ $[0, -1, 0, -104, -336]$ \(y^2=x^3-x^2-104x-336\) 2.6.0.a.1, 4.12.0-2.a.1.1, 12.24.0-12.b.1.1, 76.24.0.?, 228.48.0.?
912.b3 912.b \( 2^{4} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z$ $0.650473478$ $[0, -1, 0, -24, 48]$ \(y^2=x^3-x^2-24x+48\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 12.12.0-4.c.1.1, 24.24.0-24.z.1.12, $\ldots$
912.b4 912.b \( 2^{4} \cdot 3 \cdot 19 \) $1$ $\Z/4\Z$ $2.601893913$ $[0, -1, 0, 136, -1872]$ \(y^2=x^3-x^2+136x-1872\) 2.3.0.a.1, 4.12.0-4.c.1.1, 6.6.0.a.1, 12.24.0-12.g.1.2, 152.24.0.?, $\ldots$
912.c1 912.c \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -6848, 220416]$ \(y^2=x^3-x^2-6848x+220416\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 12.24.0-6.a.1.9, $\ldots$
912.c2 912.c \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -6688, 231040]$ \(y^2=x^3-x^2-6688x+231040\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 12.24.0-6.a.1.9, $\ldots$
912.c3 912.c \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -128, 0]$ \(y^2=x^3-x^2-128x\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 12.24.0-6.a.1.3, $\ldots$
912.c4 912.c \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 512, -512]$ \(y^2=x^3-x^2+512x-512\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 12.24.0-6.a.1.3, $\ldots$
912.d1 912.d \( 2^{4} \cdot 3 \cdot 19 \) $1$ $\mathsf{trivial}$ $0.226284916$ $[0, -1, 0, -70245, 7189389]$ \(y^2=x^3-x^2-70245x+7189389\) 5.12.0.a.2, 20.24.0-5.a.2.2, 38.2.0.a.1, 190.24.1.?, 380.48.1.?
912.d2 912.d \( 2^{4} \cdot 3 \cdot 19 \) $1$ $\mathsf{trivial}$ $1.131424581$ $[0, -1, 0, 315, 2349]$ \(y^2=x^3-x^2+315x+2349\) 5.12.0.a.1, 20.24.0-5.a.1.2, 38.2.0.a.1, 190.24.1.?, 380.48.1.?
912.e1 912.e \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -1272, -16560]$ \(y^2=x^3-x^2-1272x-16560\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 12.12.0-4.c.1.2, 24.24.0-24.s.1.3, $\ldots$
912.e2 912.e \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -192, 720]$ \(y^2=x^3-x^2-192x+720\) 2.6.0.a.1, 8.12.0-2.a.1.1, 12.12.0-2.a.1.1, 24.24.0-24.b.1.3, 76.12.0.?, $\ldots$
912.e3 912.e \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -172, 928]$ \(y^2=x^3-x^2-172x+928\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 12.12.0-4.c.1.1, 24.24.0-24.y.1.10, $\ldots$
912.e4 912.e \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 568, 4368]$ \(y^2=x^3-x^2+568x+4368\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 24.24.0-24.y.1.16, 76.12.0.?, $\ldots$
912.f1 912.f \( 2^{4} \cdot 3 \cdot 19 \) $1$ $\mathsf{trivial}$ $0.344049278$ $[0, 1, 0, 3, -9]$ \(y^2=x^3+x^2+3x-9\) 38.2.0.a.1
912.g1 912.g \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -37, -109]$ \(y^2=x^3+x^2-37x-109\) 38.2.0.a.1
912.h1 912.h \( 2^{4} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z$ $0.269535280$ $[0, 1, 0, -1528, 22484]$ \(y^2=x^3+x^2-1528x+22484\) 2.3.0.a.1, 8.6.0.d.1, 114.6.0.?, 456.12.0.?
912.h2 912.h \( 2^{4} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z$ $0.134767640$ $[0, 1, 0, -1368, 27540]$ \(y^2=x^3+x^2-1368x+27540\) 2.3.0.a.1, 8.6.0.a.1, 228.6.0.?, 456.12.0.?
912.i1 912.i \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 55, -93]$ \(y^2=x^3+x^2+55x-93\) 38.2.0.a.1
912.j1 912.j \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -92, -360]$ \(y^2=x^3+x^2-92x-360\) 2.3.0.a.1, 12.6.0.c.1, 76.6.0.?, 228.12.0.?
912.j2 912.j \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 3, -18]$ \(y^2=x^3+x^2+3x-18\) 2.3.0.a.1, 6.6.0.a.1, 76.6.0.?, 228.12.0.?
912.k1 912.k \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -1400832, 637689780]$ \(y^2=x^3+x^2-1400832x+637689780\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.m.1.7, 228.12.0.?, 456.48.0.?
912.k2 912.k \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -87552, 9941940]$ \(y^2=x^3+x^2-87552x+9941940\) 2.6.0.a.1, 4.12.0-2.a.1.1, 8.24.0-8.b.1.1, 228.24.0.?, 456.48.0.?
912.k3 912.k \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/4\Z$ $1$ $[0, 1, 0, -84992, 10553268]$ \(y^2=x^3+x^2-84992x+10553268\) 2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.d.1.2, 456.48.0.?
912.k4 912.k \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -5632, 144308]$ \(y^2=x^3+x^2-5632x+144308\) 2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.m.1.3, 114.6.0.?, 228.24.0.?, $\ldots$
912.l1 912.l \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -16, -28]$ \(y^2=x^3+x^2-16x-28\) 2.3.0.a.1, 8.6.0.d.1, 114.6.0.?, 456.12.0.?
912.l2 912.l \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 24, -108]$ \(y^2=x^3+x^2+24x-108\) 2.3.0.a.1, 8.6.0.a.1, 228.6.0.?, 456.12.0.?
  displayed columns for results