Learn more

Refine search


Results (1-50 of 51 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
9282.a1 9282.a \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $2$ $\Z/2\Z$ $0.503482289$ $[1, 1, 0, -121, 229]$ \(y^2+xy=x^3+x^2-121x+229\) 2.3.0.a.1, 34.6.0.a.1, 104.6.0.?, 1768.12.0.?
9282.a2 9282.a \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $2$ $\Z/2\Z$ $2.013929157$ $[1, 1, 0, 399, 2205]$ \(y^2+xy=x^3+x^2+399x+2205\) 2.3.0.a.1, 68.6.0.c.1, 104.6.0.?, 1768.12.0.?
9282.b1 9282.b \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $0.445400171$ $[1, 1, 0, -11186, -429216]$ \(y^2+xy=x^3+x^2-11186x-429216\) 2.3.0.a.1, 34.6.0.a.1, 104.6.0.?, 1768.12.0.?
9282.b2 9282.b \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $0.890800342$ $[1, 1, 0, 10784, -1883630]$ \(y^2+xy=x^3+x^2+10784x-1883630\) 2.3.0.a.1, 68.6.0.c.1, 104.6.0.?, 1768.12.0.?
9282.c1 9282.c \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $9.521876682$ $[1, 1, 0, -1593566, -774953556]$ \(y^2+xy=x^3+x^2-1593566x-774953556\) 2.3.0.a.1, 4.6.0.c.1, 52.12.0-4.c.1.1, 136.12.0.?, 168.12.0.?, $\ldots$
9282.c2 9282.c \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.760938341$ $[1, 1, 0, -99606, -12137580]$ \(y^2+xy=x^3+x^2-99606x-12137580\) 2.6.0.a.1, 52.12.0-2.a.1.1, 84.12.0.?, 136.12.0.?, 1092.24.0.?, $\ldots$
9282.c3 9282.c \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $9.521876682$ $[1, 1, 0, -85326, -15721860]$ \(y^2+xy=x^3+x^2-85326x-15721860\) 2.3.0.a.1, 4.6.0.c.1, 84.12.0.?, 104.12.0.?, 136.12.0.?, $\ldots$
9282.c4 9282.c \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $2.380469170$ $[1, 1, 0, -7126, -133676]$ \(y^2+xy=x^3+x^2-7126x-133676\) 2.3.0.a.1, 4.6.0.c.1, 52.12.0-4.c.1.2, 84.12.0.?, 136.12.0.?, $\ldots$
9282.d1 9282.d \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -1585, 24661]$ \(y^2+xy=x^3+x^2-1585x+24661\) 37128.2.0.?
9282.e1 9282.e \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -187070, 46349556]$ \(y^2+xy=x^3+x^2-187070x+46349556\) 37128.2.0.?
9282.f1 9282.f \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $3.880875233$ $[1, 1, 0, -28548579, -58723624197]$ \(y^2+xy=x^3+x^2-28548579x-58723624197\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 84.12.0.?, 104.24.0.?, $\ldots$
9282.f2 9282.f \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.940437616$ $[1, 1, 0, -1784289, -918110655]$ \(y^2+xy=x^3+x^2-1784289x-918110655\) 2.6.0.a.1, 8.12.0-2.a.1.1, 52.12.0-2.a.1.1, 84.12.0.?, 104.24.0.?, $\ldots$
9282.f3 9282.f \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $3.880875233$ $[1, 1, 0, -1746719, -958573545]$ \(y^2+xy=x^3+x^2-1746719x-958573545\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 52.12.0-4.c.1.1, 104.24.0.?, $\ldots$
9282.f4 9282.f \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $0.970218808$ $[1, 1, 0, -113869, -13745267]$ \(y^2+xy=x^3+x^2-113869x-13745267\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 52.12.0-4.c.1.2, 84.12.0.?, $\ldots$
9282.g1 9282.g \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -986700, -678218870]$ \(y^2+xy+y=x^3-986700x-678218870\) 3.8.0-3.a.1.1, 12376.2.0.?, 37128.16.0.?
9282.g2 9282.g \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, 103155, 17828872]$ \(y^2+xy+y=x^3+103155x+17828872\) 3.8.0-3.a.1.2, 12376.2.0.?, 37128.16.0.?
9282.h1 9282.h \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $0.818879877$ $[1, 0, 1, -3102, -56066]$ \(y^2+xy+y=x^3-3102x-56066\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 168.24.0.?, 884.12.0.?, $\ldots$
9282.h2 9282.h \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.409439938$ $[1, 0, 1, -892, 9350]$ \(y^2+xy+y=x^3-892x+9350\) 2.6.0.a.1, 8.12.0-2.a.1.1, 84.12.0.?, 168.24.0.?, 884.12.0.?, $\ldots$
9282.h3 9282.h \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $0.818879877$ $[1, 0, 1, -872, 9830]$ \(y^2+xy+y=x^3-872x+9830\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 84.12.0.?, 168.24.0.?, $\ldots$
9282.h4 9282.h \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $0.818879877$ $[1, 0, 1, 998, 44126]$ \(y^2+xy+y=x^3+998x+44126\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 84.12.0.?, 168.24.0.?, $\ldots$
9282.i1 9282.i \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -13044382, 18132484496]$ \(y^2+xy+y=x^3-13044382x+18132484496\) 2.3.0.a.1, 34.6.0.a.1, 104.6.0.?, 1768.12.0.?
9282.i2 9282.i \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -13036062, 18156772240]$ \(y^2+xy+y=x^3-13036062x+18156772240\) 2.3.0.a.1, 68.6.0.c.1, 104.6.0.?, 1768.12.0.?
9282.j1 9282.j \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -16502, -817270]$ \(y^2+xy+y=x^3-16502x-817270\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 56.12.0-4.c.1.1, 168.24.0.?, $\ldots$
9282.j2 9282.j \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -1242, -7286]$ \(y^2+xy+y=x^3-1242x-7286\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 56.12.0-4.c.1.2, 168.24.0.?, $\ldots$
9282.j3 9282.j \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -1032, -12830]$ \(y^2+xy+y=x^3-1032x-12830\) 2.6.0.a.1, 12.12.0-2.a.1.1, 56.12.0-2.a.1.1, 168.24.0.?, 884.12.0.?, $\ldots$
9282.j4 9282.j \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -52, -286]$ \(y^2+xy+y=x^3-52x-286\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 56.12.0-4.c.1.4, 168.24.0.?, $\ldots$
9282.k1 9282.k \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $2.535151390$ $[1, 0, 1, -197361, -33662204]$ \(y^2+xy+y=x^3-197361x-33662204\) 2.3.0.a.1, 68.6.0.b.1, 546.6.0.?, 18564.12.0.?
9282.k2 9282.k \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $1.267575695$ $[1, 0, 1, -110321, -63499516]$ \(y^2+xy+y=x^3-110321x-63499516\) 2.3.0.a.1, 68.6.0.a.1, 1092.6.0.?, 18564.12.0.?
9282.l1 9282.l \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -486, -4640]$ \(y^2+xy+y=x^3-486x-4640\) 3.8.0-3.a.1.1, 37128.16.0.?
9282.l2 9282.l \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, 39, 22]$ \(y^2+xy+y=x^3+39x+22\) 3.8.0-3.a.1.2, 37128.16.0.?
9282.m1 9282.m \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 577, 1010]$ \(y^2+xy+y=x^3+577x+1010\) 12376.2.0.?
9282.n1 9282.n \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 13, -52]$ \(y^2+xy+y=x^3+13x-52\) 12376.2.0.?
9282.o1 9282.o \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $0.416229413$ $[1, 1, 1, -11, -583]$ \(y^2+xy+y=x^3+x^2-11x-583\) 12376.2.0.?
9282.p1 9282.p \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -117683, -38253583]$ \(y^2+xy+y=x^3+x^2-117683x-38253583\) 37128.2.0.?
9282.q1 9282.q \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -8628, 304869]$ \(y^2+xy+y=x^3+x^2-8628x+304869\) 2.3.0.a.1, 68.6.0.b.1, 546.6.0.?, 18564.12.0.?
9282.q2 9282.q \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -8288, 330437]$ \(y^2+xy+y=x^3+x^2-8288x+330437\) 2.3.0.a.1, 68.6.0.a.1, 1092.6.0.?, 18564.12.0.?
9282.r1 9282.r \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, 974, -22849]$ \(y^2+xy+y=x^3+x^2+974x-22849\) 37128.2.0.?
9282.s1 9282.s \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -11155, -458029]$ \(y^2+xy=x^3-11155x-458029\) 37128.2.0.?
9282.t1 9282.t \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -16519, -817705]$ \(y^2+xy=x^3-16519x-817705\) 2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.k.1.1, 952.48.0.?
9282.t2 9282.t \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -12019, 502163]$ \(y^2+xy=x^3-12019x+502163\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.p.1.7, 476.12.0.?, 952.48.0.?
9282.t3 9282.t \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -1309, -5491]$ \(y^2+xy=x^3-1309x-5491\) 2.6.0.a.1, 4.12.0-2.a.1.1, 8.24.0-8.a.1.2, 476.24.0.?, 952.48.0.?
9282.t4 9282.t \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\Z/4\Z$ $1$ $[1, 0, 0, 311, -631]$ \(y^2+xy=x^3+311x-631\) 2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.p.1.1, 238.6.0.?, 476.24.0.?, $\ldots$
9282.u1 9282.u \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -33261, 2347767]$ \(y^2+xy=x^3-33261x+2347767\) 12376.2.0.?
9282.v1 9282.v \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -15945482, -16983780828]$ \(y^2+xy=x^3-15945482x-16983780828\) 2.3.0.a.1, 34.6.0.a.1, 104.6.0.?, 1768.12.0.?
9282.v2 9282.v \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 43461398, -113781351100]$ \(y^2+xy=x^3+43461398x-113781351100\) 2.3.0.a.1, 68.6.0.c.1, 104.6.0.?, 1768.12.0.?
9282.w1 9282.w \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -23302, -1371052]$ \(y^2+xy=x^3-23302x-1371052\) 2.3.0.a.1, 4.12.0-4.c.1.2, 136.24.0.?, 546.6.0.?, 1092.24.0.?, $\ldots$
9282.w2 9282.w \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -1462, -21340]$ \(y^2+xy=x^3-1462x-21340\) 2.6.0.a.1, 4.12.0-2.a.1.1, 68.24.0-68.a.1.1, 1092.24.0.?, 18564.48.0.?
9282.w3 9282.w \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -182, 420]$ \(y^2+xy=x^3-182x+420\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 68.12.0-4.c.1.2, 136.24.0.?, $\ldots$
9282.w4 9282.w \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\Z/4\Z$ $1$ $[1, 0, 0, -102, -59148]$ \(y^2+xy=x^3-102x-59148\) 2.3.0.a.1, 4.12.0-4.c.1.1, 68.24.0-68.h.1.2, 2184.24.0.?, 37128.48.0.?
9282.x1 9282.x \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -256, -1552]$ \(y^2+xy=x^3-256x-1552\) 2.3.0.a.1, 68.6.0.b.1, 546.6.0.?, 18564.12.0.?
Next   displayed columns for results