Learn more

Refine search


Results (1-50 of 51 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-mm images
9282.a1 9282.a 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 22 Z/2Z\Z/2\Z 0.5034822890.503482289 [1,1,0,121,229][1, 1, 0, -121, 229] y2+xy=x3+x2121x+229y^2+xy=x^3+x^2-121x+229 2.3.0.a.1, 34.6.0.a.1, 104.6.0.?, 1768.12.0.?
9282.a2 9282.a 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 22 Z/2Z\Z/2\Z 2.0139291572.013929157 [1,1,0,399,2205][1, 1, 0, 399, 2205] y2+xy=x3+x2+399x+2205y^2+xy=x^3+x^2+399x+2205 2.3.0.a.1, 68.6.0.c.1, 104.6.0.?, 1768.12.0.?
9282.b1 9282.b 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 0.4454001710.445400171 [1,1,0,11186,429216][1, 1, 0, -11186, -429216] y2+xy=x3+x211186x429216y^2+xy=x^3+x^2-11186x-429216 2.3.0.a.1, 34.6.0.a.1, 104.6.0.?, 1768.12.0.?
9282.b2 9282.b 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 0.8908003420.890800342 [1,1,0,10784,1883630][1, 1, 0, 10784, -1883630] y2+xy=x3+x2+10784x1883630y^2+xy=x^3+x^2+10784x-1883630 2.3.0.a.1, 68.6.0.c.1, 104.6.0.?, 1768.12.0.?
9282.c1 9282.c 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 9.5218766829.521876682 [1,1,0,1593566,774953556][1, 1, 0, -1593566, -774953556] y2+xy=x3+x21593566x774953556y^2+xy=x^3+x^2-1593566x-774953556 2.3.0.a.1, 4.6.0.c.1, 52.12.0-4.c.1.1, 136.12.0.?, 168.12.0.?, \ldots
9282.c2 9282.c 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 4.7609383414.760938341 [1,1,0,99606,12137580][1, 1, 0, -99606, -12137580] y2+xy=x3+x299606x12137580y^2+xy=x^3+x^2-99606x-12137580 2.6.0.a.1, 52.12.0-2.a.1.1, 84.12.0.?, 136.12.0.?, 1092.24.0.?, \ldots
9282.c3 9282.c 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 9.5218766829.521876682 [1,1,0,85326,15721860][1, 1, 0, -85326, -15721860] y2+xy=x3+x285326x15721860y^2+xy=x^3+x^2-85326x-15721860 2.3.0.a.1, 4.6.0.c.1, 84.12.0.?, 104.12.0.?, 136.12.0.?, \ldots
9282.c4 9282.c 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 2.3804691702.380469170 [1,1,0,7126,133676][1, 1, 0, -7126, -133676] y2+xy=x3+x27126x133676y^2+xy=x^3+x^2-7126x-133676 2.3.0.a.1, 4.6.0.c.1, 52.12.0-4.c.1.2, 84.12.0.?, 136.12.0.?, \ldots
9282.d1 9282.d 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 trivial\mathsf{trivial} 11 [1,1,0,1585,24661][1, 1, 0, -1585, 24661] y2+xy=x3+x21585x+24661y^2+xy=x^3+x^2-1585x+24661 37128.2.0.?
9282.e1 9282.e 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 trivial\mathsf{trivial} 11 [1,1,0,187070,46349556][1, 1, 0, -187070, 46349556] y2+xy=x3+x2187070x+46349556y^2+xy=x^3+x^2-187070x+46349556 37128.2.0.?
9282.f1 9282.f 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 3.8808752333.880875233 [1,1,0,28548579,58723624197][1, 1, 0, -28548579, -58723624197] y2+xy=x3+x228548579x58723624197y^2+xy=x^3+x^2-28548579x-58723624197 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 84.12.0.?, 104.24.0.?, \ldots
9282.f2 9282.f 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 1.9404376161.940437616 [1,1,0,1784289,918110655][1, 1, 0, -1784289, -918110655] y2+xy=x3+x21784289x918110655y^2+xy=x^3+x^2-1784289x-918110655 2.6.0.a.1, 8.12.0-2.a.1.1, 52.12.0-2.a.1.1, 84.12.0.?, 104.24.0.?, \ldots
9282.f3 9282.f 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 3.8808752333.880875233 [1,1,0,1746719,958573545][1, 1, 0, -1746719, -958573545] y2+xy=x3+x21746719x958573545y^2+xy=x^3+x^2-1746719x-958573545 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 52.12.0-4.c.1.1, 104.24.0.?, \ldots
9282.f4 9282.f 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 0.9702188080.970218808 [1,1,0,113869,13745267][1, 1, 0, -113869, -13745267] y2+xy=x3+x2113869x13745267y^2+xy=x^3+x^2-113869x-13745267 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 52.12.0-4.c.1.2, 84.12.0.?, \ldots
9282.g1 9282.g 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 trivial\mathsf{trivial} 11 [1,0,1,986700,678218870][1, 0, 1, -986700, -678218870] y2+xy+y=x3986700x678218870y^2+xy+y=x^3-986700x-678218870 3.8.0-3.a.1.1, 12376.2.0.?, 37128.16.0.?
9282.g2 9282.g 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 Z/3Z\Z/3\Z 11 [1,0,1,103155,17828872][1, 0, 1, 103155, 17828872] y2+xy+y=x3+103155x+17828872y^2+xy+y=x^3+103155x+17828872 3.8.0-3.a.1.2, 12376.2.0.?, 37128.16.0.?
9282.h1 9282.h 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 0.8188798770.818879877 [1,0,1,3102,56066][1, 0, 1, -3102, -56066] y2+xy+y=x33102x56066y^2+xy+y=x^3-3102x-56066 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 168.24.0.?, 884.12.0.?, \ldots
9282.h2 9282.h 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 0.4094399380.409439938 [1,0,1,892,9350][1, 0, 1, -892, 9350] y2+xy+y=x3892x+9350y^2+xy+y=x^3-892x+9350 2.6.0.a.1, 8.12.0-2.a.1.1, 84.12.0.?, 168.24.0.?, 884.12.0.?, \ldots
9282.h3 9282.h 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 0.8188798770.818879877 [1,0,1,872,9830][1, 0, 1, -872, 9830] y2+xy+y=x3872x+9830y^2+xy+y=x^3-872x+9830 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 84.12.0.?, 168.24.0.?, \ldots
9282.h4 9282.h 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 0.8188798770.818879877 [1,0,1,998,44126][1, 0, 1, 998, 44126] y2+xy+y=x3+998x+44126y^2+xy+y=x^3+998x+44126 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 84.12.0.?, 168.24.0.?, \ldots
9282.i1 9282.i 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [1,0,1,13044382,18132484496][1, 0, 1, -13044382, 18132484496] y2+xy+y=x313044382x+18132484496y^2+xy+y=x^3-13044382x+18132484496 2.3.0.a.1, 34.6.0.a.1, 104.6.0.?, 1768.12.0.?
9282.i2 9282.i 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [1,0,1,13036062,18156772240][1, 0, 1, -13036062, 18156772240] y2+xy+y=x313036062x+18156772240y^2+xy+y=x^3-13036062x+18156772240 2.3.0.a.1, 68.6.0.c.1, 104.6.0.?, 1768.12.0.?
9282.j1 9282.j 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [1,0,1,16502,817270][1, 0, 1, -16502, -817270] y2+xy+y=x316502x817270y^2+xy+y=x^3-16502x-817270 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 56.12.0-4.c.1.1, 168.24.0.?, \ldots
9282.j2 9282.j 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [1,0,1,1242,7286][1, 0, 1, -1242, -7286] y2+xy+y=x31242x7286y^2+xy+y=x^3-1242x-7286 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 56.12.0-4.c.1.2, 168.24.0.?, \ldots
9282.j3 9282.j 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,0,1,1032,12830][1, 0, 1, -1032, -12830] y2+xy+y=x31032x12830y^2+xy+y=x^3-1032x-12830 2.6.0.a.1, 12.12.0-2.a.1.1, 56.12.0-2.a.1.1, 168.24.0.?, 884.12.0.?, \ldots
9282.j4 9282.j 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [1,0,1,52,286][1, 0, 1, -52, -286] y2+xy+y=x352x286y^2+xy+y=x^3-52x-286 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 56.12.0-4.c.1.4, 168.24.0.?, \ldots
9282.k1 9282.k 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 2.5351513902.535151390 [1,0,1,197361,33662204][1, 0, 1, -197361, -33662204] y2+xy+y=x3197361x33662204y^2+xy+y=x^3-197361x-33662204 2.3.0.a.1, 68.6.0.b.1, 546.6.0.?, 18564.12.0.?
9282.k2 9282.k 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 1.2675756951.267575695 [1,0,1,110321,63499516][1, 0, 1, -110321, -63499516] y2+xy+y=x3110321x63499516y^2+xy+y=x^3-110321x-63499516 2.3.0.a.1, 68.6.0.a.1, 1092.6.0.?, 18564.12.0.?
9282.l1 9282.l 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 trivial\mathsf{trivial} 11 [1,0,1,486,4640][1, 0, 1, -486, -4640] y2+xy+y=x3486x4640y^2+xy+y=x^3-486x-4640 3.8.0-3.a.1.1, 37128.16.0.?
9282.l2 9282.l 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 Z/3Z\Z/3\Z 11 [1,0,1,39,22][1, 0, 1, 39, 22] y2+xy+y=x3+39x+22y^2+xy+y=x^3+39x+22 3.8.0-3.a.1.2, 37128.16.0.?
9282.m1 9282.m 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 trivial\mathsf{trivial} 11 [1,0,1,577,1010][1, 0, 1, 577, 1010] y2+xy+y=x3+577x+1010y^2+xy+y=x^3+577x+1010 12376.2.0.?
9282.n1 9282.n 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 trivial\mathsf{trivial} 11 [1,0,1,13,52][1, 0, 1, 13, -52] y2+xy+y=x3+13x52y^2+xy+y=x^3+13x-52 12376.2.0.?
9282.o1 9282.o 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 11 trivial\mathsf{trivial} 0.4162294130.416229413 [1,1,1,11,583][1, 1, 1, -11, -583] y2+xy+y=x3+x211x583y^2+xy+y=x^3+x^2-11x-583 12376.2.0.?
9282.p1 9282.p 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 trivial\mathsf{trivial} 11 [1,1,1,117683,38253583][1, 1, 1, -117683, -38253583] y2+xy+y=x3+x2117683x38253583y^2+xy+y=x^3+x^2-117683x-38253583 37128.2.0.?
9282.q1 9282.q 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [1,1,1,8628,304869][1, 1, 1, -8628, 304869] y2+xy+y=x3+x28628x+304869y^2+xy+y=x^3+x^2-8628x+304869 2.3.0.a.1, 68.6.0.b.1, 546.6.0.?, 18564.12.0.?
9282.q2 9282.q 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [1,1,1,8288,330437][1, 1, 1, -8288, 330437] y2+xy+y=x3+x28288x+330437y^2+xy+y=x^3+x^2-8288x+330437 2.3.0.a.1, 68.6.0.a.1, 1092.6.0.?, 18564.12.0.?
9282.r1 9282.r 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 trivial\mathsf{trivial} 11 [1,1,1,974,22849][1, 1, 1, 974, -22849] y2+xy+y=x3+x2+974x22849y^2+xy+y=x^3+x^2+974x-22849 37128.2.0.?
9282.s1 9282.s 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 trivial\mathsf{trivial} 11 [1,0,0,11155,458029][1, 0, 0, -11155, -458029] y2+xy=x311155x458029y^2+xy=x^3-11155x-458029 37128.2.0.?
9282.t1 9282.t 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [1,0,0,16519,817705][1, 0, 0, -16519, -817705] y2+xy=x316519x817705y^2+xy=x^3-16519x-817705 2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.k.1.1, 952.48.0.?
9282.t2 9282.t 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [1,0,0,12019,502163][1, 0, 0, -12019, 502163] y2+xy=x312019x+502163y^2+xy=x^3-12019x+502163 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.p.1.7, 476.12.0.?, 952.48.0.?
9282.t3 9282.t 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,0,0,1309,5491][1, 0, 0, -1309, -5491] y2+xy=x31309x5491y^2+xy=x^3-1309x-5491 2.6.0.a.1, 4.12.0-2.a.1.1, 8.24.0-8.a.1.2, 476.24.0.?, 952.48.0.?
9282.t4 9282.t 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 Z/4Z\Z/4\Z 11 [1,0,0,311,631][1, 0, 0, 311, -631] y2+xy=x3+311x631y^2+xy=x^3+311x-631 2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.p.1.1, 238.6.0.?, 476.24.0.?, \ldots
9282.u1 9282.u 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 trivial\mathsf{trivial} 11 [1,0,0,33261,2347767][1, 0, 0, -33261, 2347767] y2+xy=x333261x+2347767y^2+xy=x^3-33261x+2347767 12376.2.0.?
9282.v1 9282.v 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [1,0,0,15945482,16983780828][1, 0, 0, -15945482, -16983780828] y2+xy=x315945482x16983780828y^2+xy=x^3-15945482x-16983780828 2.3.0.a.1, 34.6.0.a.1, 104.6.0.?, 1768.12.0.?
9282.v2 9282.v 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [1,0,0,43461398,113781351100][1, 0, 0, 43461398, -113781351100] y2+xy=x3+43461398x113781351100y^2+xy=x^3+43461398x-113781351100 2.3.0.a.1, 68.6.0.c.1, 104.6.0.?, 1768.12.0.?
9282.w1 9282.w 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [1,0,0,23302,1371052][1, 0, 0, -23302, -1371052] y2+xy=x323302x1371052y^2+xy=x^3-23302x-1371052 2.3.0.a.1, 4.12.0-4.c.1.2, 136.24.0.?, 546.6.0.?, 1092.24.0.?, \ldots
9282.w2 9282.w 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,0,0,1462,21340][1, 0, 0, -1462, -21340] y2+xy=x31462x21340y^2+xy=x^3-1462x-21340 2.6.0.a.1, 4.12.0-2.a.1.1, 68.24.0-68.a.1.1, 1092.24.0.?, 18564.48.0.?
9282.w3 9282.w 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [1,0,0,182,420][1, 0, 0, -182, 420] y2+xy=x3182x+420y^2+xy=x^3-182x+420 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 68.12.0-4.c.1.2, 136.24.0.?, \ldots
9282.w4 9282.w 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 Z/4Z\Z/4\Z 11 [1,0,0,102,59148][1, 0, 0, -102, -59148] y2+xy=x3102x59148y^2+xy=x^3-102x-59148 2.3.0.a.1, 4.12.0-4.c.1.1, 68.24.0-68.h.1.2, 2184.24.0.?, 37128.48.0.?
9282.x1 9282.x 2371317 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [1,0,0,256,1552][1, 0, 0, -256, -1552] y2+xy=x3256x1552y^2+xy=x^3-256x-1552 2.3.0.a.1, 68.6.0.b.1, 546.6.0.?, 18564.12.0.?
Next   displayed columns for results