Learn more

Refine search


Results (21 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
975.a1 975.a \( 3 \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -1658, -40282]$ \(y^2+y=x^3-x^2-1658x-40282\) 390.2.0.?
975.b1 975.b \( 3 \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.269492501$ $[0, -1, 1, -8, -82]$ \(y^2+y=x^3-x^2-8x-82\) 390.2.0.?
975.c1 975.c \( 3 \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.018473682$ $[0, 1, 1, -4758, 128144]$ \(y^2+y=x^3+x^2-4758x+128144\) 390.2.0.?
975.d1 975.d \( 3 \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -1138, -15844]$ \(y^2+xy+y=x^3+x^2-1138x-15844\) 52.2.0.a.1
975.e1 975.e \( 3 \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.057170537$ $[1, 0, 0, 12, 117]$ \(y^2+xy=x^3+12x+117\) 52.2.0.a.1
975.f1 975.f \( 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -1738, -28033]$ \(y^2+xy=x^3-1738x-28033\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 24.12.0.ba.1, 26.6.0.b.1, $\ldots$
975.f2 975.f \( 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -488, 3717]$ \(y^2+xy=x^3-488x+3717\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0.h.1, 20.12.0-4.c.1.2, 60.24.0-12.h.1.2, $\ldots$
975.f3 975.f \( 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -113, -408]$ \(y^2+xy=x^3-113x-408\) 2.6.0.a.1, 12.12.0.a.1, 20.12.0-2.a.1.1, 52.12.0.b.1, 60.24.0-12.a.1.1, $\ldots$
975.f4 975.f \( 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 12, -33]$ \(y^2+xy=x^3+12x-33\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 40.12.0-4.c.1.5, 60.12.0-4.c.1.2, $\ldots$
975.g1 975.g \( 3 \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.853487407$ $[0, -1, 1, -83, 3818]$ \(y^2+y=x^3-x^2-83x+3818\) 390.2.0.?
975.h1 975.h \( 3 \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.096937012$ $[0, 1, 1, -3, 29]$ \(y^2+y=x^3+x^2-3x+29\) 390.2.0.?
975.i1 975.i \( 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $23.12562658$ $[1, 1, 0, -3250000, -2256492875]$ \(y^2+xy=x^3+x^2-3250000x-2256492875\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 20.12.0-4.c.1.1, $\ldots$
975.i2 975.i \( 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $11.56281329$ $[1, 1, 0, -203125, -35321000]$ \(y^2+xy=x^3+x^2-203125x-35321000\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.i.1, 16.48.0-8.i.1.1, 20.24.0-4.b.1.1, $\ldots$
975.i3 975.i \( 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $23.12562658$ $[1, 1, 0, -198250, -37090625]$ \(y^2+xy=x^3+x^2-198250x-37090625\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 20.12.0-4.c.1.1, $\ldots$
975.i4 975.i \( 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.781406645$ $[1, 1, 0, -13000, -528125]$ \(y^2+xy=x^3+x^2-13000x-528125\) 2.6.0.a.1, 4.24.0.b.1, 8.48.0-4.b.1.3, 20.48.0-4.b.1.1, 24.96.0-24.b.1.8, $\ldots$
975.i5 975.i \( 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.890703322$ $[1, 1, 0, -2875, 49000]$ \(y^2+xy=x^3+x^2-2875x+49000\) 2.6.0.a.1, 4.12.0.b.1, 8.48.0-8.i.1.6, 20.24.0-4.b.1.3, 40.96.0-40.bc.2.4, $\ldots$
975.i6 975.i \( 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.445351661$ $[1, 1, 0, -2750, 54375]$ \(y^2+xy=x^3+x^2-2750x+54375\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.1, 16.48.0-16.g.1.16, 20.12.0-4.c.1.2, $\ldots$
975.i7 975.i \( 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $5.781406645$ $[1, 1, 0, 5250, 284625]$ \(y^2+xy=x^3+x^2+5250x+284625\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.5, 16.48.0-16.g.1.12, 20.12.0-4.c.1.2, $\ldots$
975.i8 975.i \( 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.890703322$ $[1, 1, 0, 15125, -2468750]$ \(y^2+xy=x^3+x^2+15125x-2468750\) 2.3.0.a.1, 4.12.0.d.1, 8.48.0-8.q.1.1, 20.24.0-4.d.1.1, 24.96.0-24.be.2.7, $\ldots$
975.j1 975.j \( 3 \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 300, 14625]$ \(y^2+xy=x^3+x^2+300x+14625\) 52.2.0.a.1
975.k1 975.k \( 3 \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.574557957$ $[1, 0, 1, -46, -127]$ \(y^2+xy+y=x^3-46x-127\) 52.2.0.a.1
  displayed columns for results