Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
975.a1 |
975d1 |
975.a |
975d |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \) |
\( - 3^{3} \cdot 5^{13} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2016$ |
$0.929571$ |
$-32278933504/27421875$ |
$0.96372$ |
$5.05020$ |
$[0, -1, 1, -1658, -40282]$ |
\(y^2+y=x^3-x^2-1658x-40282\) |
390.2.0.? |
$[]$ |
975.b1 |
975b1 |
975.b |
975b |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \) |
\( - 3 \cdot 5^{7} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$0.269492501$ |
$1$ |
|
$6$ |
$288$ |
$-0.075866$ |
$-4096/195$ |
$0.83662$ |
$3.25414$ |
$[0, -1, 1, -8, -82]$ |
\(y^2+y=x^3-x^2-8x-82\) |
390.2.0.? |
$[(7, 12)]$ |
975.c1 |
975i1 |
975.c |
975i |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \) |
\( - 3^{7} \cdot 5^{7} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$0.018473682$ |
$1$ |
|
$20$ |
$2016$ |
$0.997287$ |
$-762549907456/24024195$ |
$0.97132$ |
$5.38611$ |
$[0, 1, 1, -4758, 128144]$ |
\(y^2+y=x^3+x^2-4758x+128144\) |
390.2.0.? |
$[(273, 4387)]$ |
975.d1 |
975e1 |
975.d |
975e |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \) |
\( - 3^{2} \cdot 5^{8} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$720$ |
$0.660023$ |
$-417267265/19773$ |
$0.90540$ |
$4.76625$ |
$[1, 1, 1, -1138, -15844]$ |
\(y^2+xy+y=x^3+x^2-1138x-15844\) |
52.2.0.a.1 |
$[]$ |
975.e1 |
975k1 |
975.e |
975k |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \) |
\( - 3^{6} \cdot 5^{4} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$0.057170537$ |
$1$ |
|
$12$ |
$144$ |
$-0.020457$ |
$304175/9477$ |
$0.95479$ |
$3.34625$ |
$[1, 0, 0, 12, 117]$ |
\(y^2+xy=x^3+12x+117\) |
52.2.0.a.1 |
$[(-3, 9)]$ |
975.f1 |
975g3 |
975.f |
975g |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 13 \) |
\( 3^{4} \cdot 5^{6} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1560$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$512$ |
$0.486352$ |
$37159393753/1053$ |
$1.11616$ |
$4.93940$ |
$[1, 0, 0, -1738, -28033]$ |
\(y^2+xy=x^3-1738x-28033\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 24.12.0.ba.1, 26.6.0.b.1, $\ldots$ |
$[]$ |
975.f2 |
975g4 |
975.f |
975g |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 13 \) |
\( 3 \cdot 5^{6} \cdot 13^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1560$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$512$ |
$0.486352$ |
$822656953/85683$ |
$0.96086$ |
$4.38575$ |
$[1, 0, 0, -488, 3717]$ |
\(y^2+xy=x^3-488x+3717\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0.h.1, 20.12.0-4.c.1.2, 60.24.0-12.h.1.2, $\ldots$ |
$[]$ |
975.f3 |
975g2 |
975.f |
975g |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 13 \) |
\( 3^{2} \cdot 5^{6} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$780$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$256$ |
$0.139779$ |
$10218313/1521$ |
$0.91403$ |
$3.74814$ |
$[1, 0, 0, -113, -408]$ |
\(y^2+xy=x^3-113x-408\) |
2.6.0.a.1, 12.12.0.a.1, 20.12.0-2.a.1.1, 52.12.0.b.1, 60.24.0-12.a.1.1, $\ldots$ |
$[]$ |
975.f4 |
975g1 |
975.f |
975g |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 13 \) |
\( - 3 \cdot 5^{6} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1560$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$128$ |
$-0.206795$ |
$12167/39$ |
$0.85844$ |
$2.98961$ |
$[1, 0, 0, 12, -33]$ |
\(y^2+xy=x^3+12x-33\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 40.12.0-4.c.1.5, 60.12.0-4.c.1.2, $\ldots$ |
$[]$ |
975.g1 |
975f1 |
975.g |
975f |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \) |
\( - 3^{5} \cdot 5^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$0.853487407$ |
$1$ |
|
$4$ |
$400$ |
$0.558144$ |
$-32768/3159$ |
$1.04783$ |
$4.35945$ |
$[0, -1, 1, -83, 3818]$ |
\(y^2+y=x^3-x^2-83x+3818\) |
390.2.0.? |
$[(-8, 62)]$ |
975.h1 |
975j1 |
975.h |
975j |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \) |
\( - 3^{5} \cdot 5^{3} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$0.096937012$ |
$1$ |
|
$8$ |
$80$ |
$-0.246575$ |
$-32768/3159$ |
$1.04783$ |
$2.95637$ |
$[0, 1, 1, -3, 29]$ |
\(y^2+y=x^3+x^2-3x+29\) |
390.2.0.? |
$[(3, 7)]$ |
975.i1 |
975a7 |
975.i |
975a |
$8$ |
$16$ |
\( 3 \cdot 5^{2} \cdot 13 \) |
\( 3 \cdot 5^{10} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.48.0.10 |
2B |
$6240$ |
$768$ |
$13$ |
$23.12562658$ |
$1$ |
|
$0$ |
$9216$ |
$1.994137$ |
$242970740812818720001/24375$ |
$1.04119$ |
$8.22326$ |
$[1, 1, 0, -3250000, -2256492875]$ |
\(y^2+xy=x^3+x^2-3250000x-2256492875\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 20.12.0-4.c.1.1, $\ldots$ |
$[(47745136965/2684, 9934123193216195/2684)]$ |
975.i2 |
975a5 |
975.i |
975a |
$8$ |
$16$ |
\( 3 \cdot 5^{2} \cdot 13 \) |
\( 3^{2} \cdot 5^{14} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.7 |
2Cs |
$3120$ |
$768$ |
$13$ |
$11.56281329$ |
$1$ |
|
$2$ |
$4608$ |
$1.647562$ |
$59319456301170001/594140625$ |
$1.01234$ |
$7.01472$ |
$[1, 1, 0, -203125, -35321000]$ |
\(y^2+xy=x^3+x^2-203125x-35321000\) |
2.6.0.a.1, 4.12.0.b.1, 8.24.0.i.1, 16.48.0-8.i.1.1, 20.24.0-4.b.1.1, $\ldots$ |
$[(-878361/58, 27647851/58)]$ |
975.i3 |
975a8 |
975.i |
975a |
$8$ |
$16$ |
\( 3 \cdot 5^{2} \cdot 13 \) |
\( - 3 \cdot 5^{22} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.48.0.10 |
2B |
$6240$ |
$768$ |
$13$ |
$23.12562658$ |
$1$ |
|
$0$ |
$9216$ |
$1.994137$ |
$-55150149867714721/5950927734375$ |
$1.01425$ |
$7.02897$ |
$[1, 1, 0, -198250, -37090625]$ |
\(y^2+xy=x^3+x^2-198250x-37090625\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 20.12.0-4.c.1.1, $\ldots$ |
$[(7765202319/3538, 380236785822631/3538)]$ |
975.i4 |
975a3 |
975.i |
975a |
$8$ |
$16$ |
\( 3 \cdot 5^{2} \cdot 13 \) |
\( 3^{4} \cdot 5^{10} \cdot 13^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.47 |
2Cs |
$3120$ |
$768$ |
$13$ |
$5.781406645$ |
$1$ |
|
$2$ |
$2304$ |
$1.300989$ |
$15551989015681/1445900625$ |
$0.97384$ |
$5.81652$ |
$[1, 1, 0, -13000, -528125]$ |
\(y^2+xy=x^3+x^2-13000x-528125\) |
2.6.0.a.1, 4.24.0.b.1, 8.48.0-4.b.1.3, 20.48.0-4.b.1.1, 24.96.0-24.b.1.8, $\ldots$ |
$[(-321/2, 959/2)]$ |
975.i5 |
975a2 |
975.i |
975a |
$8$ |
$16$ |
\( 3 \cdot 5^{2} \cdot 13 \) |
\( 3^{8} \cdot 5^{8} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.74 |
2Cs |
$3120$ |
$768$ |
$13$ |
$2.890703322$ |
$1$ |
|
$6$ |
$1152$ |
$0.954415$ |
$168288035761/27720225$ |
$1.01793$ |
$5.15887$ |
$[1, 1, 0, -2875, 49000]$ |
\(y^2+xy=x^3+x^2-2875x+49000\) |
2.6.0.a.1, 4.12.0.b.1, 8.48.0-8.i.1.6, 20.24.0-4.b.1.3, 40.96.0-40.bc.2.4, $\ldots$ |
$[(-60, 130)]$ |
975.i6 |
975a1 |
975.i |
975a |
$8$ |
$16$ |
\( 3 \cdot 5^{2} \cdot 13 \) |
\( 3^{4} \cdot 5^{7} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.87 |
2B |
$6240$ |
$768$ |
$13$ |
$1.445351661$ |
$1$ |
|
$5$ |
$576$ |
$0.607841$ |
$147281603041/5265$ |
$0.93867$ |
$5.13949$ |
$[1, 1, 0, -2750, 54375]$ |
\(y^2+xy=x^3+x^2-2750x+54375\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.1, 16.48.0-16.g.1.16, 20.12.0-4.c.1.2, $\ldots$ |
$[(26, 23)]$ |
975.i7 |
975a4 |
975.i |
975a |
$8$ |
$16$ |
\( 3 \cdot 5^{2} \cdot 13 \) |
\( - 3^{16} \cdot 5^{7} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.158 |
2B |
$6240$ |
$768$ |
$13$ |
$5.781406645$ |
$1$ |
|
$0$ |
$2304$ |
$1.300989$ |
$1023887723039/2798036865$ |
$1.05353$ |
$5.61219$ |
$[1, 1, 0, 5250, 284625]$ |
\(y^2+xy=x^3+x^2+5250x+284625\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.5, 16.48.0-16.g.1.12, 20.12.0-4.c.1.2, $\ldots$ |
$[(-635/4, 9295/4)]$ |
975.i8 |
975a6 |
975.i |
975a |
$8$ |
$16$ |
\( 3 \cdot 5^{2} \cdot 13 \) |
\( - 3^{2} \cdot 5^{8} \cdot 13^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.198 |
2B |
$6240$ |
$768$ |
$13$ |
$2.890703322$ |
$1$ |
|
$2$ |
$4608$ |
$1.647562$ |
$24487529386319/183539412225$ |
$1.01498$ |
$6.24295$ |
$[1, 1, 0, 15125, -2468750]$ |
\(y^2+xy=x^3+x^2+15125x-2468750\) |
2.3.0.a.1, 4.12.0.d.1, 8.48.0-8.q.1.1, 20.24.0-4.d.1.1, 24.96.0-24.be.2.7, $\ldots$ |
$[(250, 4000)]$ |
975.j1 |
975c1 |
975.j |
975c |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \) |
\( - 3^{6} \cdot 5^{10} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$720$ |
$0.784262$ |
$304175/9477$ |
$0.95479$ |
$4.74933$ |
$[1, 1, 0, 300, 14625]$ |
\(y^2+xy=x^3+x^2+300x+14625\) |
52.2.0.a.1 |
$[]$ |
975.k1 |
975h1 |
975.k |
975h |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \) |
\( - 3^{2} \cdot 5^{2} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$0.574557957$ |
$1$ |
|
$4$ |
$144$ |
$-0.144697$ |
$-417267265/19773$ |
$0.90540$ |
$3.36317$ |
$[1, 0, 1, -46, -127]$ |
\(y^2+xy+y=x^3-46x-127\) |
52.2.0.a.1 |
$[(13, 32)]$ |